Infinitude of Primes Using Formal Languages

被引:0
|
作者
Thakkar, Aalok [1 ]
机构
[1] Chennai Math Inst, Chennai 603103, India
来源
AMERICAN MATHEMATICAL MONTHLY | 2018年 / 125卷 / 08期
关键词
D O I
10.1080/00029890.2018.1496761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Formal languages are sets of strings of symbols described by a set of rules specific to them. In this note, we discuss a certain class of formal languages, called regular languages, and put forward some elementary results. The properties of these languages are then employed to prove that there are infinitely many prime numbers.
引用
收藏
页码:745 / 749
页数:5
相关论文
共 50 条
  • [41] Euler-Euclid's type proof of the infinitude of primes involving Mobius function
    Mestrovic, Romeo
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (04) : 33 - 36
  • [42] Using a mix of languages in formal methods: The PET system
    Gunter, EL
    Peled, DA
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 2981 - 2986
  • [43] Semantic Primes within and across Languages
    Goddard, Cliff
    CONTRASTIVE ANALYSIS IN LANGUAGE: IDENTIFYING LINGUISTIC UNITS OF COMPARISON, 2003, : 13 - 43
  • [44] FORMAL SPECIFICATION LANGUAGES
    PARKER, J
    TITTERINGTON, G
    ELECTRONICS AND POWER, 1986, 32 (06): : 441 - 443
  • [45] TOPOLOGIES ON FORMAL LANGUAGES
    WALTER, H
    MATHEMATICAL SYSTEMS THEORY, 1975, 9 (02): : 142 - 158
  • [46] THE SEPARABILITY OF FORMAL LANGUAGES
    PINZANI, R
    SPRUGNOLI, R
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1982, 16 (01): : 13 - 31
  • [47] Formal Language Decomposition into Semantic Primes
    Fhndrich, Johannes
    Ahrndt, Sebastian
    Albayrak, Sahin
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (01): : 56 - 72
  • [48] A class of formal languages
    Sukhanov E.V.
    Shur A.M.
    Algebra and Logic, 1998, 37 (4) : 270 - 277
  • [49] Formal languages for quasicrystals
    Escudero, JG
    SYMMETRIES IN SCIENCE IX, 1997, : 139 - 152
  • [50] Formal Choreographic Languages
    Barbanera, Franco
    Lanese, Ivan
    Tuosto, Emilio
    COORDINATION MODELS AND LANGUAGES, 2022, 13271 : 121 - 139