Infinitude of Primes Using Formal Languages

被引:0
|
作者
Thakkar, Aalok [1 ]
机构
[1] Chennai Math Inst, Chennai 603103, India
来源
AMERICAN MATHEMATICAL MONTHLY | 2018年 / 125卷 / 08期
关键词
D O I
10.1080/00029890.2018.1496761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Formal languages are sets of strings of symbols described by a set of rules specific to them. In this note, we discuss a certain class of formal languages, called regular languages, and put forward some elementary results. The properties of these languages are then employed to prove that there are infinitely many prime numbers.
引用
收藏
页码:745 / 749
页数:5
相关论文
共 50 条
  • [1] Are There Semantic Primes in Formal Languages?
    Faehndrich, Johannes
    Ahrndt, Sebastian
    Albayrak, Sahin
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 11TH INTERNATIONAL CONFERENCE, 2014, 290 : 397 - 405
  • [2] A Derivation of the Infinitude of Primes
    Pasten, Hector
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (01): : 66 - 73
  • [3] A Fractal Proof of the Infinitude of Primes*
    Kota Saito
    Lithuanian Mathematical Journal, 2019, 59 : 408 - 411
  • [4] A new proof of the infinitude of primes
    Maji B.
    Resonance, 2015, 20 (12) : 1128 - 1135
  • [5] ON THE INFINITUDE OF TWIN-PRIMES
    Feng, Bao Qi
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 33 (02): : 75 - 112
  • [6] A simple proof of the infinitude of primes
    Lemmermeyer, Franz
    ELEMENTE DER MATHEMATIK, 2020, 75 (02) : 80 - 80
  • [7] The Mobius transform and the infinitude of primes
    Pollack, Paul
    ELEMENTE DER MATHEMATIK, 2011, 66 (03) : 118 - 120
  • [8] A fractal proof of the infinitude of primes
    Saito, Kota
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (03) : 408 - 411
  • [9] A New Proof of the Infinitude of Primes
    Maji, Bibekananda
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2015, 20 (12): : 1128 - 1135
  • [10] A FORMULA AND A PROOF OF THE INFINITUDE OF THE PRIMES
    RUBINSTEIN, M
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04): : 388 - 392