Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance

被引:0
|
作者
Zhang, Dong [1 ]
Wei, Suzhong [2 ]
Li, Shoushan [1 ]
Wu, Hanqian [2 ]
Zhu, Qiaoming [1 ]
Zhou, Guodong [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-modal named entity recognition (MNER) aims to discover named entities in free text and classify them into predefined types with images. However, dominant MNER models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have the potential to refine multi-modal representation learning. To deal with this issue, we propose a unified multi-modal graph fusion (UMGF) approach for MNER. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). Then, we stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, we achieve an attention-based multi-modal representation for each word and perform entity labeling with a CRF decoder. Experimentation on the two benchmark datasets demonstrates the superiority of our MNER model.
引用
收藏
页码:14347 / 14355
页数:9
相关论文
共 50 条
  • [31] Recognition of multi-modal fusion images with irregular interference
    Wang, Yawei
    Chen, Yifei
    Wang, Dongfeng
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [32] Text-Image Scene Graph Fusion for Multimodal Named Entity Recognition
    Cheng J.
    Long K.
    Zhang S.
    Zhang T.
    Ma L.
    Cheng S.
    Guo Y.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2828 - 2839
  • [33] Multi-modal Fusion
    Liu, Huaping
    Hussain, Amir
    Wang, Shuliang
    INFORMATION SCIENCES, 2018, 432 : 462 - 462
  • [34] Chinese named entity recognition based on multi-criteria fusion
    Cai Q.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2020, 50 (05): : 929 - 934
  • [35] Chinese Named Entity Recognition Based on Multi-feature Fusion
    Sun, Zhenxiang
    Sun, Runyuan
    Liang, Zhifeng
    Su, Zhuang
    Yu, Yongxin
    Wu, Shuainan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 670 - 681
  • [36] Named Entity Recognition Method Based on Multi-Feature Fusion
    Huang, Weidong
    Yu, Xinhang
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [37] Multi-Feature Fusion Transformer for Chinese Named Entity Recognition
    Han, Xiaokai
    Yue, Qi
    Chu, Jing
    Han, Zhan
    Shi, Yifan
    Wang, Chengfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4227 - 4232
  • [38] Multi-modal scene graph inspired policy for visual navigation
    He, Yu
    Zhou, Kang
    Tian, T. Lifang
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [39] Multi-Modal fusion with multi-level attention for Visual Dialog
    Zhang, Jingping
    Wang, Qiang
    Han, Yahong
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (04)
  • [40] Named Entity Recognition based on a Graph Structure
    Munoz, David
    Perez, Fernando
    Pinto, David
    COMPUTACION Y SISTEMAS, 2020, 24 (02): : 553 - 563