CHARACTERIZATION OF GROUPS E6(3) AND 2E6(3) BY GRUENBERG-KEGEL GRAPH

被引:0
|
作者
Khramova, A. P. [1 ]
Maslova, N., V [2 ,3 ,4 ]
Panshin, V. V. [1 ,5 ]
Staroletov, A. M. [1 ,5 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
[2] Krasovskii Inst Math & Mech UB RAS, 16 S Kovalevskaja Str, Ekaterinburg 620108, Russia
[3] Ural Fed Univ, 19 Mira Str, Ekaterinburg 620002, Russia
[4] Ural Math Ctr, 19 Mira Str, Ekaterinburg 620002, Russia
[5] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
finite group; simple group; the Gruenberg-Kegel graph; exceptional group of Lie type E-6; EXCEPTIONAL GROUPS; ELEMENT ORDERS; FINITE-GROUPS; PRIME GRAPH;
D O I
10.33048/semi.2021.18.124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gruenberg-Kegel graph (or the prime graph) of a finite group Gamma(G) is defined as follows. The vertex set of Gamma(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Gamma(G) if and only if there exists an element of order rs in G. Suppose that L congruent to E-6(3) or L congruent to E--2(6)(3). We prove that if G is a finite group such that Gamma(G) = Gamma(L), then G congruent to L.
引用
收藏
页码:1651 / 1656
页数:6
相关论文
共 50 条
  • [31] Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells
    Aiewsakun, Pakorn
    Phumiphanjarphak, Worakorn
    Ludowyke, Natali
    Purwono, Priyo Budi
    Manopwisedjaroen, Suwimon
    Srisaowakarn, Chanya
    Ekronarongchai, Supanuch
    Suksatu, Ampa
    Yuvaniyama, Jirundon
    Thitithanyanont, Arunee
    GENOME BIOLOGY AND EVOLUTION, 2023, 15 (04):
  • [32] The Hurwitz subgroups of E6(2)
    Pierro, Emilio
    ARCHIV DER MATHEMATIK, 2018, 111 (05) : 457 - 468
  • [33] Weyl groups of some fine gradings on e6
    Aranda Orna, Diego
    Draper Fontanals, Cristina
    Guido, Valerio
    JOURNAL OF ALGEBRA, 2014, 417 : 353 - 390
  • [34] GEOMETRY OF ROOT ELEMENTS IN GROUPS OF TYPE E6
    Pevzner, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (03) : 603 - 635
  • [35] THE EXISTENCE OF J3 AND ITS EMBEDDINGS IN E6
    ASCHBACHER, M
    GEOMETRIAE DEDICATA, 1990, 35 (1-3) : 143 - 154
  • [36] Bounded reduction for Chevalley groups of types E6 and E7
    Gvozdevsky, Pavel
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (04)
  • [37] CHARACTERIZATION OF GROUPS E6(1)(22N),NGREATER-THAN-OR-EQUAL-TO2
    DONLEY, JL
    JOURNAL OF ALGEBRA, 1976, 40 (02) : 466 - 498
  • [38] Phosphorylation of the HPV E6 oncoprotein by DNA damage response kinases links the E6 interaction with 14-3-3 proteins and p53.
    Thatte, J. V.
    Massimi, P.
    Banks, L.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [39] Phosphorylation of the HPV E6 oncoprotein by DNA damage response kinases links the E6 interaction with 14-3-3 proteins and p53.
    Thatte, J. V.
    Massimi, P.
    Banks, L.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [40] Characterization of small molecule inhibitors of HPV E6
    Krstenansky, John
    Kolluru, Srikanth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251