CHARACTERIZATION OF GROUPS E6(3) AND 2E6(3) BY GRUENBERG-KEGEL GRAPH

被引:0
|
作者
Khramova, A. P. [1 ]
Maslova, N., V [2 ,3 ,4 ]
Panshin, V. V. [1 ,5 ]
Staroletov, A. M. [1 ,5 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
[2] Krasovskii Inst Math & Mech UB RAS, 16 S Kovalevskaja Str, Ekaterinburg 620108, Russia
[3] Ural Fed Univ, 19 Mira Str, Ekaterinburg 620002, Russia
[4] Ural Math Ctr, 19 Mira Str, Ekaterinburg 620002, Russia
[5] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
finite group; simple group; the Gruenberg-Kegel graph; exceptional group of Lie type E-6; EXCEPTIONAL GROUPS; ELEMENT ORDERS; FINITE-GROUPS; PRIME GRAPH;
D O I
10.33048/semi.2021.18.124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gruenberg-Kegel graph (or the prime graph) of a finite group Gamma(G) is defined as follows. The vertex set of Gamma(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Gamma(G) if and only if there exists an element of order rs in G. Suppose that L congruent to E-6(3) or L congruent to E--2(6)(3). We prove that if G is a finite group such that Gamma(G) = Gamma(L), then G congruent to L.
引用
收藏
页码:1651 / 1656
页数:6
相关论文
共 50 条
  • [1] RECOGNITION OF THE GROUP E6(2) BY GRUENBERG-KEGEL GRAPH
    Guo, W.
    Kondrat'ev, A. S.
    Maslova, N. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (04): : 263 - 268
  • [2] Spectra of finite simple groups E6(q) and 2E6(q)
    A. A. Buturlakin*
    Algebra and Logic, 2013, 52 : 188 - 202
  • [3] On characterization by Gruenberg-Kegel graph of finite simple exceptional groups of Lie type
    Maslova, Natalia V.
    Panshin, Viktor V.
    Staroletov, Alexey M.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [4] ON CHARACTERIZATION BY GRUENBERG-KEGEL GRAPH OF FINITE SIMPLE EXCEPTIONAL GROUPS OF LIE TYPE
    Maslova, Natalia V.
    Panshin, Viktor V.
    Staroletov, Alexey M.
    arXiv, 2023,
  • [5] Quasirecognition by the set of element orders of the groups E6(q) and 2E6(q)
    Kondrat'ev, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) : 1001 - 1018
  • [6] Quasirecognition by the set of element orders of the groups E6(q) and 2E6(q)
    A. S. Kondrat’ev
    Siberian Mathematical Journal, 2007, 48 : 1001 - 1018
  • [7] Hurwitz generation in groups of types F4, E6, 2E6, E7 and E8
    Pierro, Emilio
    JOURNAL OF GROUP THEORY, 2022, 25 (04) : 753 - 780
  • [8] The maximal subgroups of the exceptional groups F4(q), E6(q) and 2E6(q) and related almost simple groups
    Craven, David A. A.
    INVENTIONES MATHEMATICAE, 2023, 234 (02) : 637 - 719
  • [9] Automorphisms of linear spaces and groups 2E6 (q)
    Li, Shangzhao p
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (11) : 1989 - 1998
  • [10] On the recognizability of sporadic simple groups Ru, HN, Fi22, He, Mc L, and Co3 by the Gruenberg-Kegel graph
    Kondrat'ev, A. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 79 - 87