Confidence interval for the mean of non-normal data

被引:0
|
作者
Wang, FK [1 ]
机构
[1] Chang Gung Univ, Dept Business Adm, Tao Yuan 333, Taiwan
关键词
Bootstrap; Box-Cox power transformation; confidence interval; maximum likelihood estimation; normal theory method;
D O I
10.1002/qre.400
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The problem of constructing a confidence interval for the mean of non-normal data is considered. The Bootstrap method and the Box-Cox transformation method of constructing the confidence interval are compared with the normal theory method. Simulation studies are used to evaluate the performance of these different methods of constructing confidence intervals. The result is not surprising; the Bootstrap method is more effective and efficient than the Box-Cox transformation method and the normal theory method in this simulation study. A real example demonstrates the ability of these methods to construct a confidence interval for the mean of audit accounting data. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 50 条
  • [41] Physical fitness indices for data with non-normal distribution
    Hung, Chang-Hung
    Hsu, Chang-Hsien
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2011, 32 (01): : 245 - 254
  • [42] Non-normal data: Is ANOVA still a valid option?
    Blanca, Maria J.
    Alarcon, Rafael
    Arnau, Jaume
    Bono, Roser
    Bendayan, Rebecca
    [J]. PSICOTHEMA, 2017, 29 (04) : 552 - 557
  • [43] STATISTICAL BRIEFING: SUMMARIZING NON-NORMAL AND ORDINAL DATA
    Lamb, Christopher R.
    Scrivani, Peter V.
    [J]. VETERINARY RADIOLOGY & ULTRASOUND, 2009, 50 (05) : 564 - 565
  • [44] Assessing the regression to the mean for non-normal populations via kernel estimators
    John, Majnu
    Jawad, Abbas F.
    [J]. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES, 2010, 2 (07) : 288 - 292
  • [45] RELIABILITY ESTIMATION FOR MEAN UNDER NON-NORMAL POPULATION AND MEASUREMENT ERROR
    Kulkarni, Ketki
    Singh, J. R.
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2014, 7 (02): : 71 - 76
  • [46] ON APPROXIMATIONS TO SAMPLING DISTRIBUTIONS OF MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS
    REITSMA, A
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04): : 1308 - &
  • [47] Linear regression models for heteroscedastic and non-normal data
    Thinh, Raksmey
    Samart, Klairung
    Jansakul, Naratip
    [J]. SCIENCEASIA, 2020, 46 (03): : 353 - 360
  • [48] THE DESIGN OF ACCEPTANCE CONTROL CHART FOR NON-NORMAL DATA
    Tsai, Tzong-Ru
    Chiang, Jyun-You
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2008, 25 (02) : 127 - 135
  • [49] Modeling non-normal data using statistical software
    Johnson, Lou
    [J]. R&D MAGAZINE, 2007, 49 (08): : 26 - 27
  • [50] ON NON-NORMAL NUMBERS
    COLEBROO.CM
    KEMPERMA.JH
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (01): : 1 - &