Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process

被引:0
|
作者
Bacallado, Sergio [1 ]
Favaro, Stefano [2 ,3 ,4 ]
Power, Samuel [1 ]
Trippa, Lorenzo [5 ,6 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge, England
[2] Univ Turin, Dept Econ & Stat, Turin, Italy
[3] Coll Carlo Alberto, Turin, Italy
[4] IMATI CNR Enrico Magenes, Milan, Italy
[5] Dana Farber Canc Inst, Dept Biostat, Boston, MA 02115 USA
[6] Harvard Sch Publ Hlth, Boston, MA USA
来源
BAYESIAN ANALYSIS | 2022年 / 17卷 / 03期
基金
欧洲研究理事会;
关键词
Bayesian nonparametrics; Gibbs sampling; hierarchical Pitman-Yor process; perfect sampling; species sampling; unbiased Monte Carlo estimation; MONTE-CARLO; MARKOV;
D O I
10.1214/21-BA1269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.
引用
收藏
页码:685 / 709
页数:25
相关论文
共 50 条
  • [1] Hierarchical Pitman-Yor and Dirichlet Process for Language Model
    Chien, Jen-Tzung
    Chang, Ying-Lan
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2211 - 2215
  • [2] Supervised hierarchical Pitman-Yor process for natural scene segmentation
    Shyr, Alex
    Darrell, Trevor
    Jordan, Michael
    Urtasun, Raquel
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [3] Stochastic Approximations to the Pitman-Yor Process
    Arbel, Julyan
    De Blasi, Pierpaolo
    Prunster, Igor
    [J]. BAYESIAN ANALYSIS, 2019, 14 (04): : 1201 - 1219
  • [4] A Parallel Training Algorithm for Hierarchical Pitman-Yor Process Language Models
    Huang, Songfang
    Renals, Steve
    [J]. INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 2663 - 2666
  • [5] Importance conditional sampling for Pitman-Yor mixtures
    Canale, Antonio
    Corradin, Riccardo
    Nipoti, Bernardo
    [J]. STATISTICS AND COMPUTING, 2022, 32 (03)
  • [6] On a Pitman-Yor problem
    Iksanov, AM
    Kim, CS
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 68 (01) : 61 - 72
  • [7] Hierarchical Pitman-Yor language models for ASR in meetings
    Huang, Songfang
    Renals, Steve
    [J]. 2007 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, VOLS 1 AND 2, 2007, : 124 - 129
  • [8] LIMIT THEOREMS ASSOCIATED WITH THE PITMAN-YOR PROCESS
    Feng, Shui
    Gao, Fuqing
    Zhou, Youzhou
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (02) : 581 - 602
  • [9] Hierarchical Pitman-Yor Language Model for Information Retrieval
    Momtazi, Saeedeh
    Klakow, Dietrich
    [J]. SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 793 - 794
  • [10] The Pitman-Yor multinomial process for mixture modelling
    Lijoi, Antonio
    Prunster, Igor
    Rigon, Tommaso
    [J]. BIOMETRIKA, 2020, 107 (04) : 891 - 906