Supervised hierarchical Pitman-Yor process for natural scene segmentation

被引:0
|
作者
Shyr, Alex [1 ]
Darrell, Trevor [2 ]
Jordan, Michael [1 ]
Urtasun, Raquel [3 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, ICSI, Berkeley, CA 94720 USA
[3] TTI Chicago, Chicago, IL USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
From conventional wisdom and empirical studies of annotated data, it has been shown that visual statistics such as object frequencies and segment sizes follow power law distributions. Previous work has shown that both kinds of power-law behavior can be captured by using a hierarchical Pitman-Yor process prior within a nonparametric Bayesian approach to scene segmentation. In this paper, we add label information into the previously unsupervised model. Our approach exploits the labelled data by adding constraints on the parameter space during the variational learning phase. We evaluate our formulation on the LabelMe natural scene dataset, and show the effectiveness of our approach.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hierarchical Pitman-Yor and Dirichlet Process for Language Model
    Chien, Jen-Tzung
    Chang, Ying-Lan
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2211 - 2215
  • [2] Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process
    Bacallado, Sergio
    Favaro, Stefano
    Power, Samuel
    Trippa, Lorenzo
    [J]. BAYESIAN ANALYSIS, 2022, 17 (03): : 685 - 709
  • [3] Stochastic Approximations to the Pitman-Yor Process
    Arbel, Julyan
    De Blasi, Pierpaolo
    Prunster, Igor
    [J]. BAYESIAN ANALYSIS, 2019, 14 (04): : 1201 - 1219
  • [4] A Parallel Training Algorithm for Hierarchical Pitman-Yor Process Language Models
    Huang, Songfang
    Renals, Steve
    [J]. INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 2663 - 2666
  • [5] On a Pitman-Yor problem
    Iksanov, AM
    Kim, CS
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 68 (01) : 61 - 72
  • [6] Hierarchical Pitman-Yor language models for ASR in meetings
    Huang, Songfang
    Renals, Steve
    [J]. 2007 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, VOLS 1 AND 2, 2007, : 124 - 129
  • [7] LIMIT THEOREMS ASSOCIATED WITH THE PITMAN-YOR PROCESS
    Feng, Shui
    Gao, Fuqing
    Zhou, Youzhou
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (02) : 581 - 602
  • [8] Hierarchical Pitman-Yor Language Model for Information Retrieval
    Momtazi, Saeedeh
    Klakow, Dietrich
    [J]. SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 793 - 794
  • [9] The Pitman-Yor multinomial process for mixture modelling
    Lijoi, Antonio
    Prunster, Igor
    Rigon, Tommaso
    [J]. BIOMETRIKA, 2020, 107 (04) : 891 - 906
  • [10] A Hierarchical Pitman-Yor mixture of Scaled Dirichlet Distributions
    Baghdadi, Ali
    Manouchehri, Narges
    Bouguila, Nizar
    [J]. 2022 IEEE 31ST INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2022, : 168 - 173