Fabrication of phosphorus-mediated MoS2 nanosheets on carbon cloth for enhanced hydrogen evolution reaction

被引:22
|
作者
Tian, Jingyang [1 ]
Yang, Chundi [1 ]
Hao, Ruihua [1 ]
Li, Funan [1 ]
Liu, Zhirui [1 ]
Chen, Wei [2 ]
Lv, Yuancai [3 ]
Lin, Chong [1 ]
机构
[1] East China Univ Technol, Engn Res Ctr Nucl Technol Applicat, Jiangxi Prov Key Lab Polymer Micro Nano Mfg & Dev, Minist Educ, Nanchang 330013, Jiangxi, Peoples R China
[2] Anhui Agr Univ, Coll Light Text Engn & Art, Hefei 230036, Peoples R China
[3] Fuzhou Univ, Coll Environm Resources, Fujian Prov Engn Res Ctr High Value Utilizat Tech, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2; P-doped; Carbon cloth; Structural engineering; Hydrogen evolution reaction; WATER; EFFICIENT; CATALYST; ELECTROCATALYST; NANOWIRES; ELECTRODE; FACILE; SITES;
D O I
10.1016/j.ijhydene.2022.03.288
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum sulfide (MoS2) as a graphene-like sheet material has attracted wide attention owing to the potential for hydrogen evolution reaction (HER). However, the large-scale application of MoS2 is still difficult due to the inherent poor conductivity and insufficient active edge sites. Herein, we develop a simple method to grow P-doped MoS2 nanosheets on carbon cloth for high efficiency HER. The 2D carbon cloth can prevent the stacking of MoS2 nanosheets and improve the conductivity with the doping of P atoms. As a result, the PeMoS(2)/CC-300 shows the excellent electrocatalytic activity with an overpotential of 81 mV at 10 mA cm(-2) and the lower Tafel slope of 98 mV/dec. Furthermore, it also shows the good electrocatalytic durability for 15 h. This work provides an opportunity for the design of excellent and robust MoS2-based catalyst via structural engineering and doping method. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17871 / 17878
页数:8
相关论文
共 50 条
  • [21] MoS2 nanosheets grown homogeneously on hollow carbon spheres for efficient hydrogen evolution reaction and supercapacitor
    Liu, Chenchen
    Yang, Ping
    Zhang, Xiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 97 : 1348 - 1356
  • [22] Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution
    Liu, Yizhe
    Liu, Jiapeng
    Li, Zhen
    Fan, Xiaobin
    Li, Yang
    Zhang, Fengbao
    Zhang, Guoliang
    Peng, Wenchao
    Wang, Shaobin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (30) : 13946 - 13952
  • [23] MoS2 Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction
    Li, Wenyue
    Zhang, Zhenyu
    Zhang, Wenjun
    Zou, Shouzhong
    ACS OMEGA, 2017, 2 (08): : 5087 - 5094
  • [24] Facile synthesis of MoS2 nanosheets-carbon nanofibers composite as catalysts for hydrogen evolution reaction
    Nguyen Thi Minh Nguyet
    Nguyen Huu Huy Phuc
    Vinh-Dat Vuong
    Tran Van Khai
    Mai Thanh Phong
    Le Van Thang
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2019, 20 (02): : 148 - 151
  • [25] ZnCoMo nanorods modified with MoS2 nanosheets for supercapacitors and hydrogen evolution reaction
    Tao, Bairui
    Zheng, Honglin
    Feng, Lupeng
    Li, Jiao
    Miao, Fengjuan
    VACUUM, 2023, 215
  • [26] Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Venkatesh, P. Sundara
    Kannan, N.
    Babu, M. Ganesh
    Paulraj, G.
    Jeganathan, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) : 37256 - 37263
  • [27] MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction
    Wang, Peican
    Wan, Lei
    Lin, Yuqun
    Wang, Baoguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 16566 - 16574
  • [28] Rational design of MoS2 nanosheet/MoS2 nanowire homostructures and their enhanced hydrogen evolution reaction
    Yang, L.
    Yuan, X. Q.
    Liu, R. Y.
    Song, R. X.
    Wang, Q. W.
    Liang, W.
    CHALCOGENIDE LETTERS, 2023, 20 (09): : 639 - 648
  • [29] Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction
    Guo, Shaohui
    Zhang, Yuanyuan
    Tang, Songwei
    Wang, Bilin
    Wang, Yijin
    Song, Yaru
    Xin, Xu
    Zhang, Youzi
    Li, Xuanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 864
  • [30] Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range
    Cui-Hua An
    Wei Kang
    Qi-Bo Deng
    Ning Hu
    Rare Metals, 2022, 41 : 378 - 384