Enhancing Stability and Robustness of State-of-Charge Estimation for Lithium-Ion Batteries by Using Improved Adaptive Kalman Filter Algorithms

被引:5
|
作者
Zhang, Fan [1 ,2 ]
Yin, Lele [1 ,3 ]
Kang, Jianqiang [1 ,3 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Envis AESC Co Ltd, Shanghai 201315, Peoples R China
[3] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components T, Wuhan 430070, Peoples R China
关键词
lithium-ion battery; SOC estimation; adaptive Kalman filter; stability; robustness; MANAGEMENT-SYSTEMS; PART; 2; MODEL; PACKS;
D O I
10.3390/en14196284
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The traditional Kalman filter algorithms have disadvantages of poor stability (the program cannot converge or crash), robustness (sensitive to the initial errors) and accuracy, partially resulted from the fact that noise covariance matrices in the algorithms need to be set artificially. To overcome the above problems, some adaptive Kalman filter (AKF) algorithms are studied, but the problems still remain unsolved. In this study, two improved AKF algorithms, the improved Sage-Husa and innovation-based adaptive estimation (IAE) algorithms, are proposed. Under the different operating conditions, the estimation accuracy, filter stability, and robustness of the two proposed algorithms are analyzed. Results show that the state of charge (SOC) Max error based on the improved Sage-Husa and the improved IAE is less than 3% and 1.5%, respectively, while the Max errors of the original algorithms is larger than 16% and 4% The two proposed algorithms have higher filter stability than the traditional algorithms. In addition, analyses of the robustness of the two proposed algorithms are carried out by changing the initial parameters, proving that neither are sensitive to the initial errors.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] State-of-charge estimation approach of lithium-ion batteries using an improved extended Kalman filter
    Yu, Xiaowei
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    Zhang, Chenbin
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5097 - 5102
  • [2] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    [J]. 2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [3] An Adaptive Kalman Filter to Estimate State-of-Charge of Lithium-Ion Batteries
    Luo, Zhiliang
    Li, Yanjie
    Lou, Yunjiang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1227 - 1232
  • [4] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    [J]. 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408
  • [5] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    [J]. 2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [6] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    [J]. IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [7] An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    [J]. JOURNAL OF POWER SOURCES, 2018, 402 : 422 - 433
  • [8] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    [J]. 2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [9] State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization
    Yu, Zhihao
    Huai, Ruituo
    Xiao, Linjing
    [J]. ENERGIES, 2015, 8 (08): : 7854 - 7873
  • [10] State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
    Xia, Bizhong
    Wang, Haiqing
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    [J]. ENERGIES, 2015, 8 (06): : 5916 - 5936