Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals

被引:143
|
作者
Petrik, NG [1 ]
Taylor, DP [1 ]
Orlando, TM [1 ]
机构
[1] Pacific NW Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA
关键词
D O I
10.1063/1.370192
中图分类号
O59 [应用物理学];
学科分类号
摘要
The kinetics of laser-stimulated luminescence (LSL) of yttria-stabilized cubic zirconia single crystals is investigated. Excitation of ZrO2 . 9.5% Y2O3 (100) and (110) using ns pulses of 213 nm (5.82 eV), 266 nm (4.66 eV), and 355 nm (3.49 eV) photons produce LSL bands with Gaussian profiles and peak maxima at 460 nm (2.69 eV), 550 nm (2.25 eV), and 600 nm (2.07 eV), respectively. LSL involves a single-photon process for energy densities below similar to 1.0 MW/cm(2). Decay times vary from 0.1 to 100 mu s depending on the excitation energy and temperature. Decay kinetics are hyperbolic indicating that all LSL bands result from recombination. The LSL quenches with increasing temperature and activation energies obtained using the Mott approximation are 0.10+/-0.01, 0.20+/-0.02, and 0.45+/-0.04 eV for the 2.69, 2.25, and 2.07 eV LSL bands, respectively. The various activation energies, decay kinetics, and excitation/emission energies correspond to the presence of several emission centers which can be associated with anion vacancies. We tentatively assign these to intrinsic F centers and extrinsic F-type centers. The latter are associated with one and two Y3+ ions in the nearest neighborhood positions. Since the normalized temperature dependencies of the decay coefficients are similar for all the LSL bands, we suggest that recombination primarily involves electrons, trapped at intrinsic and extrinsic defect sites, and mobilized holes. [S0021-8979(99)01709-0].
引用
收藏
页码:6770 / 6776
页数:7
相关论文
共 50 条
  • [1] The luminescence of holmium doped cubic yttria-stabilized zirconia
    Gutzov, S
    Assmus, W
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (04) : 275 - 277
  • [2] LUMINESCENCE OF POLYCRYSTALLINE CUBIC AND TETRAGONAL YTTRIA-STABILIZED ZIRCONIA
    PAJE, SE
    LLOPIS, J
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1994, 55 (08) : 671 - 676
  • [3] Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
    Gallardo-Lopez, Angela
    Gomez-Garcia, Diego
    Dominguez-Rodriguez, Arturo
    [J]. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (10) : 1211 - 1214
  • [4] Enthalpy of formation of cubic yttria-stabilized zirconia
    Lee, TA
    Navrotsky, A
    Molodetsky, I
    [J]. JOURNAL OF MATERIALS RESEARCH, 2003, 18 (04) : 908 - 918
  • [5] Enthalpy of formation of cubic yttria-stabilized zirconia
    T. A. Lee
    A. Navrotsky
    I. Molodetsky
    [J]. Journal of Materials Research, 2003, 18 : 908 - 918
  • [6] Thermally stimulated depolarization current measurements in cubic and tetragonal yttria-stabilized zirconia
    Horiuchi, Naohiro
    Tsuchiya, Yu
    Nozaki, Kosuke
    Nakamura, Miho
    Nagai, Akiko
    Yamashita, Kimihiro
    [J]. SOLID STATE IONICS, 2014, 262 : 500 - 503
  • [7] Thermo-stimulated luminescence of ion-irradiated yttria-stabilized zirconia
    Costantini, Jean-Marc
    Beuneu, Francois
    Fasoli, Mauro
    Galli, Anna
    Vedda, Anna
    Martini, Marco
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (11)
  • [8] Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process
    徐家跃
    雷秀云
    蒋新
    何庆波
    房永征
    张道标
    何雪梅
    [J]. Journal of Rare Earths, 2009, 27 (06) : 971 - 974
  • [9] Industrial growth of yttria-stabilized cubic Zirconia crystals by skull melting process
    Xu Jiayue
    Lei Xiuyun
    Jiang Xin
    He Qingbo
    Fang Yongzheng
    Zhang Daobiao
    He Xuemei
    [J]. JOURNAL OF RARE EARTHS, 2009, 27 (06) : 971 - 974
  • [10] Spectroscopy Yb3+ in yttria-stabilized cubic zirconia crystals.
    Voron'ko, YK
    Veshnyakova, MA
    Lomonova, EE
    Popov, AV
    Sobol, AA
    Ushakov, SN
    Shukshin, VE
    [J]. LASER OPTICS 2003: SOLID STATE LASERS AND NONLINEAR FREQUENCY CONVERSION, 2004, 5478 : 69 - 77