Entropy-Based Mechanism of Ribosome-Nucleoid Segregation in E. coli Cells

被引:76
|
作者
Mondal, Jagannath [1 ]
Bratton, Benjamin P. [1 ]
Li, Yijie [1 ]
Yethiraj, Arun [1 ,2 ]
Weisshaar, James C. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Biophys Grad Degree Program, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; MONTE-CARLO; CHROMOSOME SEGREGATION; ACTIVE TRANSCRIPTION; POLAR LOCALIZATION; BACILLUS-SUBTILIS; SUPERCOILED DNA; RNA-POLYMERASE; BACTERIAL; ORGANIZATION;
D O I
10.1016/j.bpj.2011.04.030
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In Escherichia coli, ribosomes concentrate near the cylindrical wall and at the endcaps, whereas the chromosomal DNA segregates in the more centrally located nucleoid. A simple statistical model recovers the observed ribosome-nucleoid segregation remarkably well. Plectonemic DNA is represented as a hyperbranched hard-sphere polymer, and multiple ribosomes that simultaneously translate the same mRNA strand (polysomes) are represented as freely jointed chains of hard spheres. There are no attractive interactions between particles, only excluded-volume effects. At realistic DNA and ribosome concentrations, segregation arises primarily from two effects: the DNA polymer avoids walls to maximize conformational entropy, and the polysomes occupy the empty space near the walls to maximize translational entropy. In this complex system, maximizing total entropy results in spatial organization of the components. Due to coupling of mRNA to DNA through RNA polymerase, the same entropic effects should favor the placement of highly expressed genes at the interface between the nucleoid and the ribosome-rich periphery. Such a placement would enable efficient cotranscriptional translation and facile transertion of membrane proteins into the cytoplasmic membrane. Finally, in the model, monofunctional DNA polymer beads representing the tips of plectonemes preferentially locate near the cylindrical wall. This suggests that initiation of transcription may occur preferentially near the ribosome-rich periphery.
引用
收藏
页码:2605 / 2613
页数:9
相关论文
共 50 条
  • [31] Drift and Behavior of E. coli Cells
    Micali, Gabriele
    Colin, Remy
    Sourjik, Victor
    Endres, Robert G.
    BIOPHYSICAL JOURNAL, 2017, 113 (11) : 2321 - 2325
  • [32] Kinetics and Mechanism of E. Coli Transcription Initiation
    Plaskon, Dylan
    Henderson, Kate
    Felth, Lindsey
    Evensen, Claire
    Dyke, Sarah
    Molzahn, Cristen
    Gunther, Tristan
    Liao, Guanyu
    Shkel, Irina A.
    Record, M. Thomas
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 134A - 135A
  • [33] Investigating the mechanism of action of a novel antimicrobial peptide on live E. coli cells
    Pyne, A. L. B.
    Pfeil, M-P.
    Bennett, I.
    Ravi, J.
    Lamarre, B.
    Hoogenboom, B. W.
    Ryadnov, M. G.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S389 - S389
  • [34] Interpretation of anomalously long crosslinks in ribosome crosslinking reveals the ribosome interaction in stationary phase E. coli
    Misal, Santosh A.
    Zhao, Bingqing
    Reilly, James P.
    RSC CHEMICAL BIOLOGY, 2022, 3 (07): : 886 - 894
  • [35] Erratum: Structure of the E. coli signal recognition particle bound to a translating ribosome
    Christiane Schaffitzel
    Miro Oswald
    Imre Berger
    Takashi Ishikawa
    Jan Pieter Abrahams
    Henk K. Koerten
    Roman I. Koning
    Nenad Ban
    Nature, 2007, 448 : 1076 - 1076
  • [36] Structure of the E. coli protein-conducting channel bound to a translating ribosome
    Kakoli Mitra
    Christiane Schaffitzel
    Tanvir Shaikh
    Florence Tama
    Simon Jenni
    Charles L. Brooks
    Nenad Ban
    Joachim Frank
    Nature, 2005, 438 : 318 - 324
  • [37] Solution structure of the E. coli 70S ribosome at 11.5 Å resolution
    Gabashvili, IS
    Agrawal, RK
    Spahn, CMT
    Grassucci, RA
    Svergun, DI
    Frank, J
    Penczek, P
    CELL, 2000, 100 (05) : 537 - 549
  • [38] Investigation of interaction between SecM stop peptide and E. coli ribosome by MD
    Makarov, G.
    Shunaylov, A.
    FEBS OPEN BIO, 2021, 11 : 149 - 149
  • [39] Characterization of the Ribosome Biogenesis Landscape in E. coli Using Quantitative Mass Spectrometry
    Chen, Stephen S.
    Williamson, James R.
    JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (04) : 767 - 779
  • [40] Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A
    Prokopowicz, Malgorzata
    Gren, Bartosz
    Ciesla, Joanna
    Kierdaszuk, Borys
    BIOPHYSICAL CHEMISTRY, 2017, 230 : 99 - 108