DSets-DBSCAN: A Parameter-Free Clustering Algorithm

被引:170
|
作者
Hou, Jian [1 ,2 ]
Gao, Huijun [3 ]
Li, Xuelong [4 ]
机构
[1] Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China
[2] Univ Ca Foscari Venezia, European Ctr Living Technol, I-30124 Venice, Italy
[3] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
[4] Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; similarity matrix; histogram equalization; dominant sets; parameter-free; DOMINANT SETS; NUMBER;
D O I
10.1109/TIP.2016.2559803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering image pixels is an important image segmentation technique. While a large amount of clustering algorithms have been published and some of them generate impressive clustering results, their performance often depends heavily on user-specified parameters. This may be a problem in the practical tasks of data clustering and image segmentation. In order to remove the dependence of clustering results on user-specified parameters, we investigate the characteristics of existing clustering algorithms and present a parameter-free algorithm based on the DSets (dominant sets) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. First, we apply histogram equalization to the pairwise similarity matrix of input data and make DSets clustering results independent of user-specified parameters. Then, we extend the clusters from DSets with DBSCAN, where the input parameters are determined based on the clusters from DSets automatically. By merging the merits of DSets and DBSCAN, our algorithm is able to generate the clusters of arbitrary shapes without any parameter input. In both the data clustering and image segmentation experiments, our parameter-free algorithm performs better than or comparably with other algorithms with careful parameter tuning.
引用
收藏
页码:3182 / 3193
页数:12
相关论文
共 50 条
  • [31] Integrative Parameter-Free Clustering of Data with Mixed Type Attributes
    Boehm, Christian
    Goebl, Sebastian
    Oswald, Annahita
    Plant, Claudia
    Plavinski, Michael
    Wackersreuther, Bianca
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 38 - +
  • [32] Parameter-Free Shifted Laplacian Reconstruction for Multiple Kernel Clustering
    Wu, Xi
    Ren, Zhenwen
    Yu, F. Richard
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (04) : 1072 - 1074
  • [33] Efficient Parameter-free Clustering Using First Neighbor Relations
    Sarfraz, M. Saquib
    Sharma, Vivek
    Stiefelhagen, Rainer
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8926 - 8935
  • [34] Self-weighted spectral clustering, with parameter-free constraint
    Zhang, Rui
    Nie, Feiping
    Li, Xuelong
    [J]. NEUROCOMPUTING, 2017, 241 : 164 - 170
  • [35] A Parameter-Free Algorithm for Misspecified Linear Contextual Bandits
    Takemura, Kei
    Ito, Shinji
    Hatano, Daisuke
    Sumita, Hanna
    Fukunaga, Takuro
    Kakimura, Naonori
    Kawarabayashi, Ken-ichi
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [36] ZOBOV: a parameter-free void-finding algorithm
    Neyrinck, Mark C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (04) : 2101 - 2109
  • [37] Parameter-free optimization algorithm for iterative wavefront shaping
    Zhao, Qi
    Woo, Chi Man
    Li, Huanhao
    Zhong, Tianting
    Yu, Zhipeng
    Lai, Puxiang
    [J]. OPTICS LETTERS, 2021, 46 (12) : 2880 - 2883
  • [38] Multi-Objective Artificial Bee Colony Algorithm for Parameter-Free Neighborhood-Based Clustering
    Boudane, Fatima
    Berrichi, Ali
    [J]. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2021, 12 (04) : 186 - 204
  • [39] Parameter-free uniformisation
    Friedman, Sy-David
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3327 - 3330
  • [40] An Extended DBSCAN Clustering Algorithm
    Fahim, Ahmed
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 245 - 258