DSets-DBSCAN: A Parameter-Free Clustering Algorithm

被引:169
|
作者
Hou, Jian [1 ,2 ]
Gao, Huijun [3 ]
Li, Xuelong [4 ]
机构
[1] Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China
[2] Univ Ca Foscari Venezia, European Ctr Living Technol, I-30124 Venice, Italy
[3] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
[4] Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; similarity matrix; histogram equalization; dominant sets; parameter-free; DOMINANT SETS; NUMBER;
D O I
10.1109/TIP.2016.2559803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering image pixels is an important image segmentation technique. While a large amount of clustering algorithms have been published and some of them generate impressive clustering results, their performance often depends heavily on user-specified parameters. This may be a problem in the practical tasks of data clustering and image segmentation. In order to remove the dependence of clustering results on user-specified parameters, we investigate the characteristics of existing clustering algorithms and present a parameter-free algorithm based on the DSets (dominant sets) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. First, we apply histogram equalization to the pairwise similarity matrix of input data and make DSets clustering results independent of user-specified parameters. Then, we extend the clusters from DSets with DBSCAN, where the input parameters are determined based on the clusters from DSets automatically. By merging the merits of DSets and DBSCAN, our algorithm is able to generate the clusters of arbitrary shapes without any parameter input. In both the data clustering and image segmentation experiments, our parameter-free algorithm performs better than or comparably with other algorithms with careful parameter tuning.
引用
收藏
页码:3182 / 3193
页数:12
相关论文
共 50 条
  • [1] Radar signal sorting algorithm for DSets-DBSCAN without parameter clustering
    Liu, Lutao
    Wang, Lulu
    Li, Pin
    Chen, Tao
    [J]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2022, 44 (04): : 158 - 163
  • [2] A Parameter-Free Clustering Algorithm Based on Density Model
    Mu, Jun
    Fei, Hongxiao
    Dong, Xin
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 1825 - 1831
  • [3] PFClust: an optimised implementation of a parameter-free clustering algorithm
    Musayeva, Khadija
    Henderson, Tristan
    Mitchell, John Bo
    Mavridis, Lazaros
    [J]. SOURCE CODE FOR BIOLOGY AND MEDICINE, 2014, 9 (01):
  • [4] DSets-DBSCAN无参数聚类的雷达信号分选算法
    刘鲁涛
    王璐璐
    李品
    陈涛
    [J]. 国防科技大学学报, 2022, 44 (04) : 158 - 163
  • [5] PARAMETER-FREE CLUSTERING MODEL
    GITMAN, I
    [J]. PATTERN RECOGNITION, 1972, 4 (03) : 307 - &
  • [6] A Hybrid and Parameter-Free Clustering Algorithm for Large Data Sets
    Shao, Hengkang
    Zhang, Ping
    Chen, Xinye
    Li, Fang
    Du, Guanglong
    [J]. IEEE ACCESS, 2019, 7 : 24806 - 24818
  • [7] A parameter-free hybrid clustering algorithm used for malware categorization
    Department of Computer Science, Xiamen University, Xiamen, China
    不详
    [J]. Int. Conf. Anti-counterfeiting, Secur., Identif. Commun., ASID, 1600, (480-483):
  • [8] A Parameter-free Clustering Algorithm based K-means
    Slaoui, Said
    Dafir, Zineb
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 612 - 619
  • [9] A Parameter-Free Hybrid Clustering algorithm used for Malware Categorization
    Han, ZhiXue
    Feng, Shaorong
    Ye, Yanfang
    Jiang, Qingshan
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION IN COMMUNICATION, 2009, : 480 - +
  • [10] A parameter-free affinity based clustering
    Mukhoty, Bhaskar
    Gupta, Ruchir
    Lakshmanan, K.
    Kumar, Mayank
    [J]. APPLIED INTELLIGENCE, 2020, 50 (12) : 4543 - 4556