WEIGHTED SOLYANIK ESTIMATES FOR THE STRONG MAXIMAL FUNCTION

被引:4
|
作者
Hagelstein, Paul [1 ]
Parissis, Ioannis [2 ,3 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Univ Basque Country, Dept Matemat, Aptdo 644, E-48080 Bilbao, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
基金
芬兰科学院;
关键词
Halo function; Muckenhoupt weights; doubling measure; maximal function; Tauberian conditions; TAUBERIAN CONDITIONS; DIFFERENTIATION; INEQUALITIES; A(INFINITY); OPERATORS; SPACES;
D O I
10.5565/PUBLMAT6211807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-s denote the strong maximal operator on R-n and let w be a non-negative, locally integrable function. For alpha is an element of (0, 1) we define the weighted Tauberian constant C-S,C-w associated with M-S by C-s,C-w(alpha) := sup(E subset of Rn0<w(E)<+infinity) 1/w(E)w({x is an element of R-n : M-s(1(E))(x) > alpha}). We show that lim(alpha -> 1) - C-s,C-w (alpha) = 1 if and only if w is an element of A(infinity)(*), that is if and only if w is a strong Muckenhoupt weight. This is quantified by the estimate C-s,C-w(alpha) - 1 less than or similar to n (1-a)((en[w])A(infinity)(*))(-1), as alpha -> 1(-), where c > 0 is a numerical constant independent of n; this estimate is sharp in the sense that the exponent 11(cn[w]A*(infinity)) can not be improved in terms of [w]A*(infinity). As corollaries, we obtain a sharp reverse Holder inequality for strong Muckenhoupt weights in R-n as well as a quantitative imbedding of A(infinity)(*) into A(p)(*). We also consider the strong maximal operator on R-n associated with the weight w and denoted by M-s(w). In this case the corresponding Tauberian constant C-S(w) is defined by C-s(w)(alpha) := sup(E subset of Rn0<w(E)<+infinity) 1/w(E)w({x is an element of R-n : M-s(1(E))(x) > alpha}). We show that there exists some constant c(w,n) > 0 depending only on w and the dimension n such that C-s(w) (alpha) - 1 less than or similar to(w,n) (1-alpha)(cw,n) as alpha -> 1(-) whenever w is an element of A*(infinity) is a strong Muckenhoupt weight.
引用
收藏
页码:133 / 159
页数:27
相关论文
共 50 条
  • [21] On the strong maximal function
    Gogoladze, Larry
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (04) : 697 - 703
  • [22] Global weighted Lorentz estimates for parabolic equations with measure via strong fractional maximal functions
    The Anh Bui
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 535 - 568
  • [23] Weighted Solyanik Estimates for the Hardy–Littlewood Maximal Operator and Embedding of [inline-graphic not available: see fulltext] into [inline-graphic not available: see fulltext]
    Paul Hagelstein
    Ioannis Parissis
    The Journal of Geometric Analysis, 2016, 26 : 924 - 946
  • [24] Weighted Estimates for Maximal Functions Associated to Skeletons
    Olivo, Andrea
    Rela, Ezequiel
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 4407 - 4426
  • [25] Weighted Estimates for Maximal Functions Associated to Skeletons
    Andrea Olivo
    Ezequiel Rela
    The Journal of Geometric Analysis, 2020, 30 : 4407 - 4426
  • [26] WEAK AND STRONG TYPE ESTIMATES FOR MAXIMAL TRUNCATIONS OF CALDERON-ZYGMUND OPERATORS ON AP WEIGHTED SPACES
    Hytonen, Tuomas P.
    Lacey, Michael T.
    Martikainen, Henri
    Orponen, Tuomas
    Reguera, Maria Carmen
    Sawyer, Eric T.
    Uriarte-Tuero, Ignacio
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 177 - 220
  • [27] The Multilinear Strong Maximal Function
    Loukas Grafakos
    Liguang Liu
    Carlos Pérez
    Rodolfo H. Torres
    Journal of Geometric Analysis, 2011, 21 : 118 - 149
  • [28] The Multilinear Strong Maximal Function
    Grafakos, Loukas
    Liu, Liguang
    Perez, Carlos
    Torres, Rodolfo H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (01) : 118 - 149
  • [29] WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS
    CHANILLO, S
    WHEEDEN, RL
    AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) : 1191 - 1226
  • [30] MAXIMAL RESTRICTION ESTIMATES AND THE MAXIMAL FUNCTION OF THE FOURIER TRANSFORM
    Ramos, Joao P. G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (03) : 1131 - 1138