Droplets containing large solid particle inside formation and breakup dynamics in a flow-focusing microfluidic device

被引:5
|
作者
Pan, Dawei [1 ]
Chen, Qiang [1 ]
Zeng, Yong [1 ]
Li, Bo [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Monodisperse S/W/O compound droplets; Flow-focusing device; Neck rupture behaviors; Scaling law; Driving mechanisms; DOUBLE EMULSION DROPLETS; OIL COMPOUND DROPLETS; T-JUNCTION; FABRICATION; MICROENCAPSULATION; MICROCAPSULES; MECHANISM;
D O I
10.1016/j.expthermflusci.2020.110103
中图分类号
O414.1 [热力学];
学科分类号
摘要
The breakup dynamics of compound droplets containing large particle inside (S/W/O) in a flow-focusing microfluidic device were systematically investigated, and four typical flow regimes, regarding multiple-encapsulation, slug, transition and cobble, are distinguished. At low flow rate of outer fluid, Q(c) < 140 mL/h, the neck breakup can be divided into squeezing stage (W-n/W-c >= 0.25), and rapid pinch-off stage (W-n/W-c <= 0.25) during the whole formation process. However, for Q(c) >= 140 mL/h, the neck rupture behavior appears various, in which only rapid pinch-off stage can be observed. Generally, the neck dimensionless width, W-n/W-c variation with remaining time usually obeys a power law function. Moreover, the liquid film thickness always obtains a critical value as the flow rate of outer fluid further increases. Specially, it suggests that the differences in the breakup dynamics are mainly caused by the existence of solid particles. Finally, the corresponding driving mechanisms were also discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device
    Wu, Yining
    Fu, Taotao
    Ma, Youguang
    Li, Huai Z.
    [J]. SOFT MATTER, 2013, 9 (41) : 9792 - 9798
  • [2] Bubble formation and breakup mechanism in a microfluidic flow-focusing device
    Fu, Taotao
    Ma, Youguang
    Funfschilling, Denis
    Li, Huai Z.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (10) : 2392 - 2400
  • [3] Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device
    Xue, Chun-Dong
    Chen, Xiao-Dong
    Li, Yong-Jiang
    Hu, Guo-Qing
    Cao, Tun
    Qin, Kai-Rong
    [J]. MICROMACHINES, 2020, 11 (04)
  • [4] Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting
    Fu, Taotao
    Wu, Yining
    Ma, Youguang
    Li, Hua Z.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 84 : 207 - 217
  • [5] Breakup of compound jets with inner droplets in a capillary flow-focusing device
    Wang, Ju
    Liu, Zhaomiao
    Pang, Yan
    Li, Mengqi
    Zhou, Qiang
    [J]. PHYSICS OF FLUIDS, 2021, 33 (01)
  • [6] Formation of monodisperse bubbles in a microfluidic flow-focusing device
    Garstecki, P
    Gitlin, I
    DiLuzio, W
    Whitesides, GM
    Kumacheva, E
    Stone, HA
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (13) : 2649 - 2651
  • [7] Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device
    Du, Wei
    Fu, Taotao
    Duan, Yingfeng
    Zhu, Chunying
    Ma, Youguang
    Li, Huai Z.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2018, 176 : 66 - 76
  • [8] Experimental investigation on the breakup dynamics for bubble formation in viscous liquids in a flow-focusing device
    Lu, Yutao
    Fu, Taotao
    Zhu, Chunying
    Ma, Youguang
    Li, Huai Z.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 152 : 516 - 527
  • [9] Simulation of a microfluidic flow-focusing device
    Dupin, Michael M.
    Halliday, Ian
    Care, Chris M.
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] An axisymmetric flow-focusing microfluidic device
    Takeuchi, S
    Garstecki, P
    Weibel, DB
    Whitesides, GM
    [J]. ADVANCED MATERIALS, 2005, 17 (08) : 1067 - +