MIXED CAUSAL-NONCAUSAL AR PROCESSES AND THE MODELLING OF EXPLOSIVE BUBBLES

被引:15
|
作者
Fries, Sebastien [1 ,2 ]
Zakoian, Jean-Michel [1 ,3 ]
机构
[1] CREST, 5 Ave Henri Le Chatelier, F-91120 Palaiseau, France
[2] Paris Saclay Univ, St Aubin, France
[3] Univ Lille, Lille, France
关键词
LIMIT THEORY; TAIL; AUTOREGRESSION; EXUBERANCE; INFERENCE; VARIANCE; CLUSTERS;
D O I
10.1017/S0266466618000452
中图分类号
F [经济];
学科分类号
02 ;
摘要
Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gourieroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.
引用
收藏
页码:1234 / 1270
页数:37
相关论文
共 42 条
  • [1] Forecasting bubbles with mixed causal-noncausal autoregressive models
    Hecq, Alain
    Voisin, Elisa
    [J]. ECONOMETRICS AND STATISTICS, 2021, 20 : 29 - 45
  • [2] Detecting Common Bubbles in Multivariate Mixed Causal-Noncausal Models
    Cubadda, Gianluca
    Hecq, Alain
    Voisin, Elisa
    [J]. ECONOMETRICS, 2023, 11 (01)
  • [3] Mixed causal-noncausal autoregressions with exogenous regressors
    Hecq, Alain
    Issler, Joao Victor
    Telg, Sean
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2020, 35 (03) : 328 - 343
  • [4] Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing
    Bec, Frederique
    Nielsen, Heino Bohn
    Saidi, Sarra
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2021, 82 (06) : 1413 - 1428
  • [5] Yiddish Causal-Noncausal Alternation in Areal Perspective
    Luchina, Elena
    [J]. JOURNAL OF JEWISH LANGUAGES, 2022, 10 (01) : 87 - 119
  • [6] An explanation of causal-noncausal verb alternations in terms of frequency of use
    Inoue, Kazuko
    [J]. COGNITIVE LINGUISTIC STUDIES, 2022, 9 (02) : 361 - 400
  • [7] Causal and Noncausal Processes Underlying Being Bullied
    Silberg, Judy
    Kendler, Kenneth S.
    [J]. JAMA PSYCHIATRY, 2017, 74 (11) : 1091 - 1092
  • [8] ADAPTATIVE ESTIMATION IN NONCAUSAL STATIONARY AR PROCESSES
    GASSIAT, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 475 - 478
  • [9] ADAPTIVE ESTIMATION IN NONCAUSAL STATIONARY AR PROCESSES
    GASSIAT, E
    [J]. ANNALS OF STATISTICS, 1993, 21 (04): : 2022 - 2042
  • [10] Coding causal-noncausal verb alternations: A form-frequency correspondence explanation (vol 50, pg 587, 2014)
    Haspelmath, Martin
    Calude, Andreea
    Spagnol, Michael
    Narrog, Heiko
    Bamyaci, Elif
    [J]. JOURNAL OF LINGUISTICS, 2014, 50 (03) : 779 - 779