Mixed causal-noncausal autoregressions with exogenous regressors

被引:7
|
作者
Hecq, Alain [1 ]
Issler, Joao Victor [2 ]
Telg, Sean [3 ]
机构
[1] Maastricht Univ, Sch Business & Econ, Dept Quantitat Econ, Maastricht, Netherlands
[2] Getulio Vargas Fdn, Grad Sch Econ EPGE, Rio De Janeiro, Brazil
[3] Vrije Univ Amsterdam, Dept Econometr & Operat Res, De Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION;
D O I
10.1002/jae.2751
中图分类号
F [经济];
学科分类号
02 ;
摘要
Mixed causal-noncausal autoregressive (MAR) models have been proposed to model time series exhibiting nonlinear dynamics. Possible exogenous regressors are typically substituted into the error term to maintain the MAR structure of the dependent variable. We introduce a representation including these covariates called MARX to study their direct impact. The asymptotic distribution of the MARX parameters is derived for a class of non-Gaussian densities. For a Student t likelihood, closed-form standard errors are provided. By simulations, we evaluate the MARX model selection procedure using information criteria. We examine the influence of the exchange rate and industrial production index on commodity prices.
引用
收藏
页码:328 / 343
页数:16
相关论文
共 50 条
  • [1] Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing
    Bec, Frederique
    Nielsen, Heino Bohn
    Saidi, Sarra
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2021, 82 (06) : 1413 - 1428
  • [2] Forecasting bubbles with mixed causal-noncausal autoregressive models
    Hecq, Alain
    Voisin, Elisa
    [J]. ECONOMETRICS AND STATISTICS, 2021, 20 : 29 - 45
  • [3] Detecting Common Bubbles in Multivariate Mixed Causal-Noncausal Models
    Cubadda, Gianluca
    Hecq, Alain
    Voisin, Elisa
    [J]. ECONOMETRICS, 2023, 11 (01)
  • [4] MIXED CAUSAL-NONCAUSAL AR PROCESSES AND THE MODELLING OF EXPLOSIVE BUBBLES
    Fries, Sebastien
    Zakoian, Jean-Michel
    [J]. ECONOMETRIC THEORY, 2019, 35 (06) : 1234 - 1270
  • [5] Yiddish Causal-Noncausal Alternation in Areal Perspective
    Luchina, Elena
    [J]. JOURNAL OF JEWISH LANGUAGES, 2022, 10 (01) : 87 - 119
  • [6] An explanation of causal-noncausal verb alternations in terms of frequency of use
    Inoue, Kazuko
    [J]. COGNITIVE LINGUISTIC STUDIES, 2022, 9 (02) : 361 - 400
  • [7] Selecting between causal and noncausal models with quantile autoregressions
    Hecq, Alain
    Sun, Li
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2021, 25 (05): : 393 - 416
  • [8] Noncausal Autoregressions for Economic Time Series
    Lanne, Markku
    Saikkonen, Pentti
    [J]. JOURNAL OF TIME SERIES ECONOMETRICS, 2011, 3 (03)
  • [9] Coding causal-noncausal verb alternations: A form-frequency correspondence explanation (vol 50, pg 587, 2014)
    Haspelmath, Martin
    Calude, Andreea
    Spagnol, Michael
    Narrog, Heiko
    Bamyaci, Elif
    [J]. JOURNAL OF LINGUISTICS, 2014, 50 (03) : 779 - 779
  • [10] Bootstrapping Noncausal Autoregressions: With Applications to Explosive Bubble Modeling
    Cavaliere, Giuseppe
    Nielsen, Heino Bohn
    Rahbek, Anders
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (01) : 55 - 67