Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach
被引:6
|
作者:
Zheng, X. J.
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
Fudan Univ, Sch Management, Dept Management Sci, Shanghai 200433, Peoples R ChinaChinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
Zheng, X. J.
[2
,3
]
Sun, X. L.
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Management, Dept Management Sci, Shanghai 200433, Peoples R ChinaChinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
Sun, X. L.
[3
]
Li, D.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
Li, D.
[1
]
机构:
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Fudan Univ, Sch Management, Dept Management Sci, Shanghai 200433, Peoples R China
We present in this paper an integer diagonalization approach for deriving new lower bounds for general quadratic integer programming problems. More specifically, we introduce a semiunimodular transformation in order to diagonalize a symmetric matrix and preserve integral property of the feasible set at the same time. Via the semiunimodular transformation, the resulting separable quadratic integer program is a relaxation of the nonseparable quadratic integer program. We further define the integer diagonalization dual problem to identify the best semiunimodular transformation and analyze some basic properties of the set of semiunimodular transformations for a rational symmetric matrix. In particular, we present a complete characterization of the set of all semiunimodular transformations for a nonsingular 2x2 symmetric matrix. We finally discuss Lagrangian relaxation and convex relaxation schemes for the resulting separable quadratic integer programming problem and compare the tightness of different relaxation schemes.
机构:
Univ Wisconsin Madison, Dept Ind & Syst Engn, Madison, WI USA
Univ Wisconsin Madison, Wisconsin Inst Discovery, Madison, WI USAUniv Wisconsin Madison, Dept Ind & Syst Engn, Madison, WI USA
Del Pia, Alberto
Dey, Santanu S.
论文数: 0引用数: 0
h-index: 0
机构:Univ Wisconsin Madison, Dept Ind & Syst Engn, Madison, WI USA
Dey, Santanu S.
Molinaro, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Comp Sci, Rio de Janeiro, BrazilUniv Wisconsin Madison, Dept Ind & Syst Engn, Madison, WI USA