Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach

被引:6
|
作者
Zheng, X. J. [2 ,3 ]
Sun, X. L. [3 ]
Li, D. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Fudan Univ, Sch Management, Dept Management Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic integer programming; Separable relaxation; Semiunimodular congruence transformation; Lagrangian relaxation; Convex relaxation; GLOBAL MINIMIZATION; KNAPSACK-PROBLEM; BOUND ALGORITHM; PORTFOLIO SELECTION; BOX CONSTRAINTS; CUT METHOD; OPTIMIZATION; BRANCH; SEMIDEFINITE; REFORMULATION;
D O I
10.1007/s10957-010-9653-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present in this paper an integer diagonalization approach for deriving new lower bounds for general quadratic integer programming problems. More specifically, we introduce a semiunimodular transformation in order to diagonalize a symmetric matrix and preserve integral property of the feasible set at the same time. Via the semiunimodular transformation, the resulting separable quadratic integer program is a relaxation of the nonseparable quadratic integer program. We further define the integer diagonalization dual problem to identify the best semiunimodular transformation and analyze some basic properties of the set of semiunimodular transformations for a rational symmetric matrix. In particular, we present a complete characterization of the set of all semiunimodular transformations for a nonsingular 2x2 symmetric matrix. We finally discuss Lagrangian relaxation and convex relaxation schemes for the resulting separable quadratic integer programming problem and compare the tightness of different relaxation schemes.
引用
收藏
页码:463 / 489
页数:27
相关论文
共 50 条
  • [31] A multiparametric programming approach for mixed-integer quadratic engineering problems
    Dua, V
    Bozinis, NA
    Pistikopoulos, EN
    COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (4-5) : 715 - 733
  • [32] A polynomial case of convex integer quadratic programming problems with box integer constraints
    Chunli Liu
    Jianjun Gao
    Journal of Global Optimization, 2015, 62 : 661 - 674
  • [33] A polynomial case of convex integer quadratic programming problems with box integer constraints
    Liu, Chunli
    Gao, Jianjun
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 661 - 674
  • [34] Integer matrix diagonalization
    Havas, G
    Majewski, BS
    JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 399 - 408
  • [35] Mixed-integer quadratic programming is in NP
    Del Pia, Alberto
    Dey, Santanu S.
    Molinaro, Marco
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 225 - 240
  • [36] ON THE REGULARIZATION OF VECTOR INTEGER QUADRATIC PROGRAMMING PROBLEMS
    Emeliehev, V. A.
    Gurevskii, E. E.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (02) : 274 - 280
  • [37] MIXED INTEGER QUADRATIC GOAL PROGRAMMING.
    Sharma, J.K.
    Gupta, A.K.
    1600, (67):
  • [38] Alignment of molecular networks by integer quadratic programming
    Zhenping, Li
    Zhang, Shihua
    Wang, Yong
    Zhang, Xiang-Sun
    Chen, Luonan
    BIOINFORMATICS, 2007, 23 (13) : 1631 - 1639
  • [39] ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING
    Buchheim, Christoph
    Huebner, Ruth
    Schoebel, Anita
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 741 - 769
  • [40] MIXED-INTEGER QUADRATIC-PROGRAMMING
    LAZIMY, R
    MATHEMATICAL PROGRAMMING, 1982, 22 (03) : 332 - 349