Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering

被引:149
|
作者
Yim, Dami [1 ,2 ]
Sathiyamoorthi, Praveen [1 ,2 ]
Hong, Soon-Jik [3 ,4 ]
Kim, Hyoung Seop [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
[3] Kongju Natl Univ, Div Adv Mat Engn, Cheonan 32588, South Korea
[4] Kongju Natl Univ, Inst Rare Met, Cheonan 32588, South Korea
基金
新加坡国家研究基金会;
关键词
High-entropy alloy; Powder metallurgy; Nano-composites; Atomization; TiC particles; MATRIX COMPOSITE; DEFORMATION-BEHAVIOR; NANO-PARTICLES; MICROSTRUCTURE; COMPACTION; STRENGTH; ENERGY;
D O I
10.1016/j.jallcom.2018.12.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the TiC-reinforced CoCrFeMnNi high-entropy alloy (HEA) composite was fabricated using water atomization (WA), mechanical milling (MM), and spark plasma sintering (SPS). The microstructural evolution and mechanical properties of TiC-reinforced HEA composite are investigated using electron backscatter diffraction, transmission electron microscopy, and room temperature compression tests. The addition of 5 wt% of TiC nano-particles to CoCrFeMnNi HEA resulted in fine grain size, high yield strength, and high strain hardening. The average grain size achieved for alloys with and without TiC after sintering is 5.1 mu m and 10.6 mu m, respectively. The addition of TiC increases the compressive yield strength from similar to 507 MPa to similar to 698 MPa and compressive fracture strength from similar to 1527 MPa to similar to 2216 MPa, without sacrificing the ductility. The strengthening behavior of TiC-reinforced CoCrFeMnNi HEA composite is quantitatively discussed based on grain boundary strengthening, dislocation strengthening, and dispersion strengthening. The role of TiC nano-particles in the strain hardening improvement is investigated with respect to the dislocation-particle interaction and consequently increased dislocation density. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 50 条
  • [31] Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy
    Ji, Wei
    Fu, Zhengyi
    Wang, Weimin
    Wang, Hao
    Zhang, Jinyong
    Wang, Yucheng
    Zhang, Fan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 589 : 61 - 66
  • [32] Sintering mechanism of CoCrFeMnNi high-entropy alloy powders
    Mane, Rahul B.
    Rajkumar, Y.
    Panigrahi, Bharat B.
    POWDER METALLURGY, 2018, 61 (02) : 131 - 138
  • [33] Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid
    Ji, Wei
    Zhang, Jinyong
    Wang, Weimin
    Wang, Hao
    Zhang, Fan
    Wang, Yucheng
    Fu, Zhengyi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (03) : 879 - 886
  • [34] Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering
    Luo, Wenyan
    Liu, Yunzhong
    Luo, Yang
    Wu, Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 754 : 163 - 170
  • [35] MECHANICAL PROPERTIES OF HIGH ENTROPY ALLOY TiC REINFORCED IN-SITU COMPOSITE
    Moravcik, Igor
    Cizek, Jan
    Dlouhy, Ivo
    27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2018), 2018, : 1635 - 1640
  • [36] Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
    Ji, Wei
    Wang, Weimin
    Wang, Hao
    Zhang, Jinyong
    Wang, Yucheng
    Zhang, Fan
    Fu, Zhengyi
    INTERMETALLICS, 2015, 56 : 24 - 27
  • [37] Microstructure and mechanical properties of oxide dispersion strengthened FeNiMnCr high-entropy alloy fabricated by spark plasma sintering
    Zhang, Yuyang
    Liu, Bin
    Zhao, Zhenyu
    Fu, Ao
    Cao, Yuankui
    Zhang, Ruiqian
    Li, Jia
    Fang, Qihong
    Liu, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 990
  • [38] Effect of Zr Addition on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Synthesized by Spark Plasma Sintering
    Zhang, Hongling
    Zhang, Lei
    Liu, Xinyu
    Chen, Qiang
    Xu, Yi
    ENTROPY, 2018, 20 (11)
  • [39] Refractory CrMoNbWV High-Entropy Alloy Manufactured by Mechanical Alloying and Spark Plasma Sintering: Evolution of Microstructure and Properties
    Razumov, Nikolay
    Makhmutov, Tagir
    Kim, Artem
    Shemyakinsky, Boris
    Shakhmatov, Aleksey
    Popovich, Vera
    Popovich, Anatoly
    MATERIALS, 2021, 14 (03) : 1 - 14
  • [40] High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering
    Tan, Zhen
    Wang, Lu
    Xue, Yunfei
    Zhang, Peng
    Cao, Tangqing
    Cheng, Xingwang
    MATERIALS & DESIGN, 2016, 109 : 219 - 226