Demodulation of Multi-Level Data Using Convolutional Neural Network in Holographic Data Storage

被引:0
|
作者
Katano, Yutaro [1 ]
Muroi, Tetsuhiko [1 ]
Kinoshita, Nobuhiro [1 ]
Ishii, Norihiko [1 ]
机构
[1] NHK Sci & Technol Res Labs, Adv Funct Devices Res Div, Tokyo, Japan
来源
2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA) | 2018年
关键词
holographic data storage; convolutional neural network; pattern recognition; RETRIEVAL; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We evaluated a deep learning-based data demodulation method for multi-level recording data in holographic data storage. This method demodulates reproduced data as pattern recognition using a convolutional neural network. The network learns the rule of demodulation in consideration of optical noise that deteriorates the quality of reproduced data. Unlike with a conventional hard decision method, the learnt network demodulated the noise-added data accurately and decreased demodulation errors.
引用
收藏
页码:728 / 732
页数:5
相关论文
共 50 条
  • [21] Interference Estimation Using a Recurrent Neural Network Equalizer for Holographic Data Storage Systems
    Nguyen, Thien An
    Lee, Jaejin
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [22] Multi-level Kronecker Convolutional Neural Network (ML-KCNN) for Glioma Segmentation from Multi-modal MRI Volumetric Data
    Ali, Muhammad Junaid
    Raza, Basit
    Shahid, Ahmad Raza
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 905 - 921
  • [23] Multi-level Kronecker Convolutional Neural Network (ML-KCNN) for Glioma Segmentation from Multi-modal MRI Volumetric Data
    Muhammad Junaid Ali
    Basit Raza
    Ahmad Raza Shahid
    Journal of Digital Imaging, 2021, 34 : 905 - 921
  • [24] Classification of Hyperspectral Data Using a Multi-Channel Convolutional Neural Network
    Chen, Chen
    Zhang, Jing-Jing
    Zheng, Chun-Hou
    Yan, Qing
    Xun, Li-Na
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 81 - 92
  • [25] Multi-view multi-level contrastive graph convolutional network for cancer subtyping on multi-omics data
    Yang, Bo
    Cui, Chenxi
    Wang, Meng
    Ji, Hong
    Gao, Feiyue
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [26] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Dingchao Jiang
    Hua Qu
    Jihong Zhao
    Jianlong Zhao
    Wei Liang
    Telecommunication Systems, 2021, 77 : 563 - 576
  • [27] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Jiang, Dingchao
    Qu, Hua
    Zhao, Jihong
    Zhao, Jianlong
    Liang, Wei
    TELECOMMUNICATION SYSTEMS, 2021, 77 (03) : 563 - 576
  • [28] On-Chip Deep Neural Network Storage with Multi-Level eNVM
    Donato, Marco
    Reagen, Brandon
    Pentecost, Lillian
    Gupta, Udit
    Brooks, David
    Wei, Gu-Yeon
    2018 55TH ACM/ESDA/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2018,
  • [29] A multi-level single-bit data storage device
    Bickel, Jessica E.
    Khan, Mina
    Aidala, Katherine E.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [30] Hierarchical Bayesian learning framework for multi-level modeling using multi-level data
    Jia, Xinyu
    Papadimitriou, Costas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 179