Demodulation of Multi-Level Data Using Convolutional Neural Network in Holographic Data Storage

被引:0
|
作者
Katano, Yutaro [1 ]
Muroi, Tetsuhiko [1 ]
Kinoshita, Nobuhiro [1 ]
Ishii, Norihiko [1 ]
机构
[1] NHK Sci & Technol Res Labs, Adv Funct Devices Res Div, Tokyo, Japan
关键词
holographic data storage; convolutional neural network; pattern recognition; RETRIEVAL; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We evaluated a deep learning-based data demodulation method for multi-level recording data in holographic data storage. This method demodulates reproduced data as pattern recognition using a convolutional neural network. The network learns the rule of demodulation in consideration of optical noise that deteriorates the quality of reproduced data. Unlike with a conventional hard decision method, the learnt network demodulated the noise-added data accurately and decreased demodulation errors.
引用
收藏
页码:728 / 732
页数:5
相关论文
共 50 条
  • [21] Multi-level Kronecker Convolutional Neural Network (ML-KCNN) for Glioma Segmentation from Multi-modal MRI Volumetric Data
    Ali, Muhammad Junaid
    Raza, Basit
    Shahid, Ahmad Raza
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 905 - 921
  • [22] Interference Estimation Using a Recurrent Neural Network Equalizer for Holographic Data Storage Systems
    Nguyen, Thien An
    Lee, Jaejin
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [23] Multi-level Kronecker Convolutional Neural Network (ML-KCNN) for Glioma Segmentation from Multi-modal MRI Volumetric Data
    Muhammad Junaid Ali
    Basit Raza
    Ahmad Raza Shahid
    [J]. Journal of Digital Imaging, 2021, 34 : 905 - 921
  • [24] Classification of Hyperspectral Data Using a Multi-Channel Convolutional Neural Network
    Chen, Chen
    Zhang, Jing-Jing
    Zheng, Chun-Hou
    Yan, Qing
    Xun, Li-Na
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 81 - 92
  • [25] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Dingchao Jiang
    Hua Qu
    Jihong Zhao
    Jianlong Zhao
    Wei Liang
    [J]. Telecommunication Systems, 2021, 77 : 563 - 576
  • [26] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Jiang, Dingchao
    Qu, Hua
    Zhao, Jihong
    Zhao, Jianlong
    Liang, Wei
    [J]. TELECOMMUNICATION SYSTEMS, 2021, 77 (03) : 563 - 576
  • [27] On-Chip Deep Neural Network Storage with Multi-Level eNVM
    Donato, Marco
    Reagen, Brandon
    Pentecost, Lillian
    Gupta, Udit
    Brooks, David
    Wei, Gu-Yeon
    [J]. 2018 55TH ACM/ESDA/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2018,
  • [28] A multi-level single-bit data storage device
    Bickel, Jessica E.
    Khan, Mina
    Aidala, Katherine E.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [29] Hierarchical Bayesian learning framework for multi-level modeling using multi-level data
    Jia, Xinyu
    Papadimitriou, Costas
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 179
  • [30] Convolutional neural network-based data page classification for holographic memory
    Shimobaba, Tomoyoshi
    Kuwata, Naoki
    Homma, Mizuha
    Takahashi, Takayuki
    Nagahama, Yuki
    Sano, Marie
    Hasegawa, Satoki
    Hirayama, Ryuji
    Kakue, Takashi
    Shiraki, Atsushi
    Takada, Naoki
    Ito, Tomoyoshi
    [J]. APPLIED OPTICS, 2017, 56 (26) : 7327 - 7330