Evaluating uncertainty in mapping forest carbon with airborne LiDAR

被引:185
|
作者
Mascaro, Joseph [1 ,2 ]
Detto, Matteo [2 ]
Asner, Gregory P. [1 ]
Muller-Landau, Helene C. [2 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[2] Smithsonian Trop Res Inst, Balboa, Panama
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Aboveground biomass; Crown radius; Light detection and ranging; Tree allometry; Tropical forest carbon stocks; Spatial autocorrelation; BARRO-COLORADO ISLAND; TROPICAL FOREST; ABOVEGROUND BIOMASS;
D O I
10.1016/j.rse.2011.07.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne LiDAR is increasingly used to map carbon stocks in tropical forests, but our understanding of mapping errors is constrained by the spatial resolution (i.e., plot size) used to calibrate LiDAR with field data (typically 0.1-0.36 ha). Reported LiDAR errors range from 17 to 40 Mg C ha(-1), but should be lower at coarser resolutions because relative errors are expected to scale with (plot area)(-1/2). We tested this prediction empirically using a 50-ha plot with mapped trees, allowing an assessment of LiDAR prediction errors at multiple spatial resolutions. We found that errors scaled approximately as expected, declining by 38% (compared to 40% predicted from theory) from 0.36- to 1-ha resolution. We further reduced errors at all spatial resolutions by accounting for tree crowns that are bisected by plot edges (not typically done in forestry), and collectively show that airborne LiDAR can map carbon stocks with 10% error at 1-ha resolution a level comparable to the use of field plots alone. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3770 / 3774
页数:5
相关论文
共 50 条
  • [31] MAPPING FOREST CANOPY HEIGHT USING TANDEM-X DSM AND AIRBORNE LIDAR DTM
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Simard, Marc
    Papathanassiou, Kostas
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [32] AIRBORNE UV LIDAR FOR FOREST PARAMETER RETRIEVALS
    Shang, Xiaoxia
    Chazette, Patrick
    Totems, Julien
    27TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 27), 2016, 119
  • [33] An Overview of Shoreline Mapping by Using Airborne LiDAR
    Wang, Junbo
    Wang, Lanying
    Feng, Shufang
    Peng, Benrong
    Huang, Lingfeng
    Fatholahi, Sarah N.
    Tang, Lisa
    Li, Jonathan
    REMOTE SENSING, 2023, 15 (01)
  • [34] USING UAV PLATFORM FOR AIRBORNE LIDAR MAPPING
    Wrona, Maciej
    Piotrowska, Wioletta
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING CONFERENCE PROCEEDINGS, SGEM 2016, VOL I, 2016, : 937 - 944
  • [35] Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric
    Asner, Gregory P.
    Mascaro, Joseph
    REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 614 - 624
  • [36] Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem
    Campbell, Michael J.
    Eastburn, Jessie F.
    Dennison, Philip E.
    Vogeler, Jody C.
    Stovall, Atticus E. L.
    REMOTE SENSING OF ENVIRONMENT, 2024, 308
  • [37] Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
    Brovkina, Olga
    Novotny, Jan
    Cienciala, Emil
    Zemek, Frantisek
    Russ, Radek
    ECOLOGICAL ENGINEERING, 2017, 100 : 219 - 230
  • [38] Mapping forest structure and uncertainty in an urban area using leaf-off lidar data
    Huan Gu
    Philip A. Townsend
    Urban Ecosystems, 2017, 20 : 497 - 509
  • [39] Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska
    Zhao, Yuhuan
    Chen, Richard H.
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4955 - 4958
  • [40] Mapping forest structure and uncertainty in an urban area using leaf-off lidar data
    Gu, Huan
    Townsend, Philip A.
    URBAN ECOSYSTEMS, 2017, 20 (02) : 497 - 509