ON THE MULTIFRACTAL SPECTRUM OF WEIGHTED BIRKHOFF AVERAGES

被引:1
|
作者
Barany, Balazs [1 ]
Rams, Michal [2 ]
Shi, Ruxi [3 ]
机构
[1] Budapest Univ Technol & Econ, Dept Stochast, MTA BME Stochast Res Grp, POB 91, H-1521 Budapest, Hungary
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Sorbonne Univ, LPSM, F-75005 Paris, France
关键词
weighted Birkhoff averages; VARIATIONAL PRINCIPLE; RECURRENCE; DIMENSION; DIGITS;
D O I
10.3934/dcds.2021199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the topological spectrum of weighted Birk- hoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its domain. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Mobius sequence.
引用
收藏
页码:2461 / 2497
页数:37
相关论文
共 50 条
  • [21] Birkhoff averages and bifurcations
    Homburg, AJ
    Young, T
    [J]. GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS: FESTSCHRIFT DEDICATED TO FLORIS TAKENS FOR HIS 60TH BIRTHDAY, 2001, : 405 - 417
  • [22] Multifractal spectra of Birkhoff averages for a piecewise monotone interval map (vol 208, pg 95, 2010)
    Hofbauer, Franz
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 214 (02) : 199 - 200
  • [23] Higher order Birkhoff averages
    Jordan, Thomas
    Naudot, Vincent
    Young, Todd
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (03): : 299 - 313
  • [24] Weighted Multifractal Spectrum of V-Statistics
    Alejandro Mesón
    Fernando Vericat
    [J]. Journal of Dynamics and Differential Equations, 2022, 34 : 1085 - 1105
  • [25] Weighted Multifractal Spectrum of V-Statistics
    Meson, Alejandro
    Vericat, Fernando
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 1085 - 1105
  • [26] Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV: Divergence points and packing dimension
    Olsen, L.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (08): : 650 - 678
  • [27] Ordered Fuzzy Weighted Averages and Ordered Linguistic Weighted Averages
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [28] Pointwise convergence of Birkhoff averages for global observables
    Lenci, Marco
    Munday, Sara
    [J]. CHAOS, 2018, 28 (08)
  • [29] Multifractal analysis of multiple ergodic averages
    Fan, Aihua
    Schmeling, Jorg
    Wu, Meng
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (17-18) : 961 - 964
  • [30] Mixed multifractal spectra of Birkhoff averages for non-uniformly expanding one-dimensional Markov maps with countably many branches
    Jaerisch, Johannes
    Takahasi, Hiroki
    [J]. ADVANCES IN MATHEMATICS, 2021, 385