ON THE MULTIFRACTAL SPECTRUM OF WEIGHTED BIRKHOFF AVERAGES

被引:1
|
作者
Barany, Balazs [1 ]
Rams, Michal [2 ]
Shi, Ruxi [3 ]
机构
[1] Budapest Univ Technol & Econ, Dept Stochast, MTA BME Stochast Res Grp, POB 91, H-1521 Budapest, Hungary
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Sorbonne Univ, LPSM, F-75005 Paris, France
关键词
weighted Birkhoff averages; VARIATIONAL PRINCIPLE; RECURRENCE; DIMENSION; DIGITS;
D O I
10.3934/dcds.2021199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the topological spectrum of weighted Birk- hoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its domain. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Mobius sequence.
引用
收藏
页码:2461 / 2497
页数:37
相关论文
共 50 条
  • [1] MULTIFRACTAL SPECTRUM OF QUOTIENTS OF BIRKHOFF AVERAGES FOR A FAMILY OF QUADRATIC MAPS
    Meson, Alejandro
    Vericat, Fernando
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2018, 16 (01) : 17 - 32
  • [2] The multifractal analysis of Birkhoff averages and large deviations
    Pesin, Y
    Weiss, H
    [J]. GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS: FESTSCHRIFT DEDICATED TO FLORIS TAKENS FOR HIS 60TH BIRTHDAY, 2001, : 419 - 431
  • [3] Weighted Birkhoff Averages and the Parameterization Method
    Blessing, David
    James, J.D. Mireles
    [J]. SIAM Journal on Applied Dynamical Systems, 2024, 23 (04): : 1766 - 1804
  • [4] Multifractal analysis of the divergence points of Birkhoff averages for β-transformations
    Chen, Yuanhong
    Zhang, Zhenliang
    Zhao, Xiaojun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2017, 182 (04): : 823 - 839
  • [5] Multifractal analysis of Birkhoff averages for countable Markov maps
    Iommi, Godofredo
    Jordan, Thomas
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2559 - 2586
  • [6] Multifractal Spectrum for Barycentric Averages
    Alejandro Mesón
    Fernando Vericat
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 623 - 635
  • [7] Multifractal Spectrum for Barycentric Averages
    Meson, Alejandro
    Vericat, Fernando
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (04) : 623 - 635
  • [8] Multifractal analysis of weighted ergodic averages
    Fan, Aihua
    [J]. ADVANCES IN MATHEMATICS, 2021, 377
  • [9] Multifractal analysis for disintegrations of Gibbs measures and conditional Birkhoff averages
    Feng, De-Jun
    Shu, Lin
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 885 - 918
  • [10] Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers
    Reeve, Henry W. J.
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 212 (01) : 71 - 93