ELASTIC PROPERTIES OF GRAPHENE-GRAPHANE NANORIBBONS

被引:8
|
作者
Glukhova, O. E. [1 ]
Saliy, I. N. [1 ]
Zhnichkov, R. Y. [2 ]
Khvatov, I. A. [2 ]
Kolesnikova, A. S. [1 ]
Slepchenkov, M. M. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Saratov 410012, Russia
[2] Saratov NG Chernyshevskii State Univ, Povolzhsky Reg Ctr New Informat Technol Network &, Saratov 410012, Russia
关键词
D O I
10.1088/1742-6596/248/1/012004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The results of theoretical investigation of the atomic structure, deformations, and elastic properties of graphene-graphane nanoribbons (GGN) are represented here. To study the properties of GGN we applied the empirical method based on the bond-order potential developed by Brenner and the tight-binding method. We calculated the Young's pseudo-modulus of GGN and the strain energy of GGN subject to axial tension and compression. The curve of the strain energy collapse occurs at the axial compression of 0.03-0.04. Plane atomic network subject to axial compression becomes wave-like. This is a so-called phase transition. Elasticity of armchair-graphene nanoribbons is greater than elasticity of armchair nanotubes and graphane nanoribbons with the same width and length.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Magnetism in quantum dots on graphene-graphane nanoribbons
    L. A. Chernozatonskii
    V. A. Demin
    P. P. Gusyatnikova
    [J]. Doklady Physics, 2013, 58 : 272 - 276
  • [2] Magnetism in quantum dots on graphene-graphane nanoribbons
    Chernozatonskii, L. A.
    Demin, V. A.
    Gusyatnikova, P. P.
    [J]. DOKLADY PHYSICS, 2013, 58 (07) : 272 - 276
  • [3] Magnetic properties in graphene-graphane superlattices
    Lee, Joo-Hyoung
    Grossman, Jeffrey C.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (13)
  • [4] Interfacial properties and morphologies of graphene-graphane composite sheets
    Reddy, C. D.
    Cheng, Q. H.
    Shenoy, V. B.
    Zhang, Y. W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (05)
  • [5] Transport properties of hybrid graphene/graphane nanoribbons
    Zou, Wei
    Yu, Zhizhou
    Zhang, C. X.
    Zhong, J. X.
    Sun, L. Z.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [6] Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study
    Rajabpour, A.
    Allaei, S. M. Vaez
    Kowsary, F.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (05)
  • [7] Enhanced thermoelectric properties in hybrid graphane/ graphene nanoribbons
    Xie, Zhong-Xiang
    Deng, Yuan-Xiang
    Zhang, Yong
    Zhou, Wu-Xing
    Song, Ke-Hui
    Liu, Ming-Hui
    Mo, Zi-Xiong
    Jia, Pin-Zhen
    [J]. PHYSICA B-CONDENSED MATTER, 2024, 691
  • [8] Phase separation of hydrogen atoms adsorbed on graphene and the smoothness of the graphene-graphane interface
    Rakhmanov, A. L.
    Rozhkov, A. V.
    Sboychakov, A. O.
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2012, 85 (03)
  • [9] Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy
    M. E. Kompan
    D. S. Krylov
    [J]. Technical Physics Letters, 2010, 36 : 1140 - 1142
  • [10] Detecting Graphene-Graphane Reconstruction in Hydrogenated Nanoporous Carbon by Raman Spectroscopy
    Kompan, M. E.
    Krylov, D. S.
    [J]. TECHNICAL PHYSICS LETTERS, 2010, 36 (12) : 1140 - 1142