Higher analogues of Stickelberger's theorem

被引:1
|
作者
Banaszak, G [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Dept Math, Poznan, Poland
关键词
D O I
10.1016/j.crma.2003.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be an odd prime number, F denote any totally real number field and E/F be an Abelian CM extension of F of conductor f. In this paper we prove that for every n odd and almost all prime numbers I we have S-n(E/F, I) C Ann(Z1[G(E/F)])H(2) (O-E[1/l]; Z(l)(n + 1)) where S-n(E/F, l) is the Stiekelberger ideal (Ann. of Math. 135 (1992) 325-360; J. Coates, p-adic L-functions and Iwasawa's theory, in: Algebraic Number Fields by A. Frohlich, Academic Press, London, 1977). In addition if we assume the Quillen-Lichtenbaum conjecture then S-n(E/F, l) subset of A(nnZl[G(E/F)]) K-2n(OE)(l). (C) 2003 Academie des sciences. Published by Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 50 条
  • [21] Analogues of Bull's theorem for hybrid logic
    Conradie, Willem
    Robinson, Claudette
    LOGIC JOURNAL OF THE IGPL, 2019, 27 (03) : 281 - 313
  • [22] On the analogues of Szego's theorem for ergodic operators
    Kirsch, W.
    Pastur, L. A.
    SBORNIK MATHEMATICS, 2015, 206 (01) : 93 - 119
  • [23] ANALOGUES OF KHINTCHINE'S THEOREM FOR RANDOM ATTRACTORS
    Baker, Simon
    Troscheit, Sascha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1411 - 1441
  • [24] q-analogues of Wilson's theorem
    Chapman, Robin
    Pan, Hao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (04) : 539 - 547
  • [25] HIGHER STICKELBERGER IDEALS AND EVEN K-GROUPS
    El Boukhari, Saad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) : 3231 - 3239
  • [26] An application of Stickelberger's Congruence
    Xia, Ling-Li
    PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2008, 7 : 330 - 336
  • [27] A SIMPLE PROOF OF EISENSTEIN RECIPROCITY LAW FROM STICKELBERGER THEOREM
    SPEARMAN, BK
    WILLIAMS, KS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (02): : 169 - 174
  • [28] Function-Field Analogues of Bang-Zsigmondy's Theorem and Feit's Theorem
    Nguyen Ngoc Dong Quan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (06) : 2081 - 2124
  • [29] Dobrowolski's theorem in higher dimension
    Amoroso, F
    David, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10): : 1163 - 1166
  • [30] DILIBERTO'S THEOREM IN HIGHER DIMENSION
    Bonnin, Michele
    Corinto, Fernando
    Gilli, Marco
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 629 - 637