Higher analogues of Stickelberger's theorem

被引:1
|
作者
Banaszak, G [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Dept Math, Poznan, Poland
关键词
D O I
10.1016/j.crma.2003.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be an odd prime number, F denote any totally real number field and E/F be an Abelian CM extension of F of conductor f. In this paper we prove that for every n odd and almost all prime numbers I we have S-n(E/F, I) C Ann(Z1[G(E/F)])H(2) (O-E[1/l]; Z(l)(n + 1)) where S-n(E/F, l) is the Stiekelberger ideal (Ann. of Math. 135 (1992) 325-360; J. Coates, p-adic L-functions and Iwasawa's theory, in: Algebraic Number Fields by A. Frohlich, Academic Press, London, 1977). In addition if we assume the Quillen-Lichtenbaum conjecture then S-n(E/F, l) subset of A(nnZl[G(E/F)]) K-2n(OE)(l). (C) 2003 Academie des sciences. Published by Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 50 条
  • [1] On a generalization of Stickelberger's Theorem
    Scheiblechner, Peter
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (12) : 1459 - 1470
  • [2] A generalization of Stickelberger's theorem
    Zeno, Guangxing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2880 - 2887
  • [3] Stickelberger's Discriminant Theorem for Algebras
    Auel, Asher
    Biesel, Owen
    Voight, John
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (07): : 656 - 670
  • [4] Monomial bent functions and Stickelberger's theorem
    Langevin, Philippe
    Leander, Gregor
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) : 727 - 742
  • [5] An explicit version of a theorem of Stickelberger
    Tzermias, Pavlos
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 272 - 286
  • [6] The Theta divisor and the Stickelberger theorem
    Alvarez, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2207 - 2217
  • [7] A non-abelian Stickelberger theorem
    Burns, David
    Johnston, Henri
    COMPOSITIO MATHEMATICA, 2011, 147 (01) : 35 - 55
  • [8] Ternary Kloosterman Sums Modulo 18 Using Stickelberger's Theorem
    Goeloglu, Faruk
    McGuire, Gary
    Moloney, Richard
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 196 - 203
  • [9] On Analogues of Heilbronn's Theorem
    Dolgov, D. A.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 841 - 854
  • [10] On Analogues of Heilbronn’s Theorem
    D. A. Dolgov
    Mathematical Notes, 2022, 111 : 841 - 854