Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli

被引:47
|
作者
Tanaka, Naoyuki [1 ]
Kawano, Yusuke [1 ]
Satoh, Yasuharu [2 ]
Dairi, Tohru [2 ]
Ohtsu, Iwao [1 ]
机构
[1] Univ Tsukuba, Grad Sch Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[2] Hokkaido Univ, Grad Sch Engn, Kita Ku, N13 & W8, Sapporo, Hokkaido 0608628, Japan
关键词
CYANOBACTERIA PRODUCE; ANTIOXIDANT ACTION; BIOSYNTHESIS; GLUTATHIONE; SULFOXIDE; REVEALS;
D O I
10.1038/s41598-018-38382-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ergothioneine (ERG), a unique thiol compound, is suggested to function as an antioxidant and cytoprotectant. Despite several recent attempts to produce ERG using various organisms, its yield was still very low and the costs remained high. Since the level of ERG produced depends strictly on the availability of three distinct precursor amino acids (L-cysteine (Cys), L-histidine, and L-methionine (Met)), metabolic engineering for enhancement of the flux toward ERG biosynthesis is required. Herein, we took advantage of a high-Cys production system using Escherichia coli cells, in which Cys biosynthesis and excretion were activated, and applied it to the fermentative production of ERG from glucose. The Cys overproduction in E. coli cells carrying the egtBCDE genes from Mycobacterium smegmatis was effective for ERG production. Furthermore, coexpression of the egtA gene, which encodes gamma-glutamylcysteine synthetase that synthesizes the gamma-glutamylcysteine used as a sulfur source of ERG biosynthesis, enhanced ERG production even though E. coli intrinsically has gamma-glutamylcysteine synthetase. Additionally, disruption of the metJ gene that encodes the transcriptional repressor involved in Met metabolism was effective in further increasing the production of ERG. Finally, we succeeded in the high-level production of 1.31 g/L ERG in a fed-batch culture process using a jar fermenter.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Double Allylation Strategy for Gram-Scale Guaianolide Production: Total Synthesis of (+)-Mikanokryptin
    Hu, Xirui
    Xu, Silong
    Maimone, Thomas J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) : 1624 - 1628
  • [32] Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli
    Han, Gui Hwan
    Kim, Seong Keun
    Yoon, Paul Kyung-Seok
    Kang, Younghwan
    Kim, Byoung Su
    Fu, Yaoyao
    Sung, Bong Hyun
    Jung, Heung Chae
    Lee, Dae-Hee
    Kim, Seon-Won
    Lee, Seung-Goo
    [J]. MICROBIAL CELL FACTORIES, 2016, 15
  • [33] Plasma-enabled multifunctional platform for gram-scale production of graphene and derivatives
    Dias, Ana
    Felizardo, Edgar
    Bundaleska, Neli
    Abrashev, Miroslav
    Kissovski, Jivko
    Ferraria, Ana M.
    Rego, Ana M.
    Strunskus, Thomas
    Carvalho, Patricia A.
    Almeida, Amelia
    Zavas, Janez
    Kovacevic, Eva
    Berndt, Johannes
    Bundaleski, Nenad
    Ammar, Mohammed- Ramzi
    Teodoro, Orlando M. N. D.
    Cvelbar, Uros
    Alves, Luis L.
    Goncalves, Bruno
    Tatarova, Elena
    [J]. APPLIED MATERIALS TODAY, 2024, 36
  • [34] Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli
    Zou, Xinyu
    Guo, Laixian
    Huang, Lilong
    Li, Miao
    Zhang, Sheng
    Yang, Anren
    Zhang, Yu
    Zhu, Luying
    Zhang, Hongxia
    Zhang, Juan
    Feng, Zhibin
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (06) : 2545 - 2559
  • [35] Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli
    Ning, Yike
    Wu, Xuejiao
    Zhang, Chenglin
    Xu, Qingyang
    Chen, Ning
    Xie, Xixian
    [J]. METABOLIC ENGINEERING, 2016, 36 : 10 - 18
  • [36] Fermentative production of short-chain fatty acids in Escherichia coli
    Volker, Alexandra R.
    Gogerty, David S.
    Bartholomay, Christian
    Hennen-Bierwagen, Tracie
    Zhu, Huilin
    Bobik, Thomas A.
    [J]. MICROBIOLOGY-SGM, 2014, 160 : 1513 - 1522
  • [37] Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli
    Xinyu Zou
    Laixian Guo
    Lilong Huang
    Miao Li
    Sheng Zhang
    Anren Yang
    Yu Zhang
    Luying Zhu
    Hongxia Zhang
    Juan Zhang
    Zhibin Feng
    [J]. Applied Microbiology and Biotechnology, 2020, 104 : 2545 - 2559
  • [38] Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures
    Seppala, Jenni J.
    Puhakka, Jaakko A.
    Yli-Harja, Olli
    Karp, Matti T.
    Santala, Ville
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 10701 - 10708
  • [39] Fermentative production and direct extraction of (−)-α-bisabolol in metabolically engineered Escherichia coli
    Gui Hwan Han
    Seong Keun Kim
    Paul Kyung-Seok Yoon
    Younghwan Kang
    Byoung Su Kim
    Yaoyao Fu
    Bong Hyun Sung
    Heung Chae Jung
    Dae-Hee Lee
    Seon-Won Kim
    Seung-Goo Lee
    [J]. Microbial Cell Factories, 15
  • [40] High Production of Ergothioneine in Escherichia coli using the Sulfoxide Synthase from Methylobacterium strains
    Kamide, Tomoyuki
    Takusagawa, Shun
    Tanaka, Naoyuki
    Ogasawara, Yasushi
    Kawano, Yusuke
    Ohtsu, Iwao
    Satoh, Yasuharu
    Dairi, Tohru
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (23) : 6390 - 6394