Registration of cortical anatomical structures via robust 3D point matching

被引:0
|
作者
Chui, H [1 ]
Rambo, J
Duncan, J
Schultz, R
Rangarajan, A
机构
[1] Yale Univ, Dept Diagnost Radiol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[3] Yale Univ, Yale Child Study Ctr, New Haven, CT 06520 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inter-subject non-rigid registration of cortical anatomical structures as seen in MR is a challenging problem. The variability of the sulcal and gyral patterns across patients makes the task of registration especially difficult regardless of whether voxel- or feature-based techniques are used. In this paper, we present an approach to matching sulcal point features interactively extracted by neuroanatomical experts. The robust point matching (RPM) algorithm is used to find the optimal affine transformations for matching sulcal points. A 3D linearly interpolated non-rigid warping is then generated for the original image volume. We present quantitative and visual comparisons between Talairach, mutual information-based volumetric matching and RPM on five subjects' MR images.
引用
下载
收藏
页码:168 / 181
页数:14
相关论文
共 50 条
  • [31] PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
    Deng, Haowen
    Birdal, Tolga
    Ilie, Slobodan
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 195 - 205
  • [32] Learning a Task-Specific Descriptor for Robust Matching of 3D Point Clouds
    Zhang, Zhiyuan
    Dai, Yuchao
    Fan, Bin
    Sun, Jiadai
    He, Mingyi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8462 - 8475
  • [33] The generation of hierarchic structures via robust 3D topology optimisation
    Hofmeyer, Herm
    Schevenels, Mattias
    Boonstra, Sjonnie
    ADVANCED ENGINEERING INFORMATICS, 2017, 33 : 440 - 455
  • [34] A procedure to average 3D anatomical structures
    Subramanyan, K
    Dean, D
    MEDICAL IMAGE ANALYSIS, 2000, 4 (04) : 317 - 334
  • [35] Robust 3D Point Set Registration Using Iterative Closest Point Algorithm with Bounded Rotation Angle
    Zhang, Chunjia
    Du, Shaoyi
    Liu, Juan
    Xue, Jianru
    SIGNAL PROCESSING, 2016, 120 : 777 - 788
  • [36] Pattern Design for 3D Point Matching
    Robinson, Shane B.
    Christian, John A.
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2015, 62 (03): : 189 - 203
  • [37] Automatic Point Cloud Registration for 3D Virtual-to-Real Registration Using Macro and Micro Structures
    Zhang, Yan
    Zhang, Lu
    Zhao, Xin
    Fu, Hongyong
    Yu, Dequan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6566 - 6581
  • [38] Image Registration Using Consistent Robust Point Matching
    Yang, Xuan
    Pei, Jihong
    Shi, Jingli
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [39] Point Cloud Registration-Driven Robust Feature Matching for 3-D Siamese Object Tracking
    Jiang, Haobo
    Lan, Kaihao
    Hui, Le
    Li, Guangyu
    Xie, Jin
    Gao, Shangbing
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 11
  • [40] 3D face tracking using appearance registration and robust iterative closest point algorithm
    Dornaika, Fadi
    Sappa, Angel D.
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2006, PROCEEDINGS, 2006, 4263 : 532 - +