Spectral collocation-based optimization in parameter estimation for nonlinear time-varying dynamical systems

被引:0
|
作者
Deshmukh, Venkatesh [1 ]
机构
[1] Villanova Univ, Villanova, PA 19085 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A constructive optimization algorithm using Chebyshev spectral collocation and quadratic programming is proposed for unknown parameter estimation in nonlinear time-varying dynamic system models to be constructed from available data. The parameters to be estimated are assumed to be identifiable from the data which also implies that the assumed system models with known parameter values have a unique solution corresponding to every initial condition and parameter set. The nonlinear terms in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a residual quadratic cost is set up which is a function of unknown parameters only. The minimization of this cost yields the unique solution for the unknown parameters since the models are assumed to have a unique solution for a particular parameter set. An efficient algorithm is presented step-wise and is illustrated using suitable examples.
引用
收藏
页码:853 / 862
页数:10
相关论文
共 50 条
  • [21] An approach to periodic, time-varying parameter estimation using nonlinear filtering
    Arnold, Andrea
    Lloyd, Alun L.
    INVERSE PROBLEMS, 2018, 34 (10)
  • [22] Simultaneous State and Parameter Estimation for a Nonlinear Time-Varying System.
    Viveros, Rodrigo A.
    Yuz, Juan I.
    Perez-Ibacache, Ricardo R.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2014, 11 (03): : 263 - 274
  • [23] External dynamical equivalence of time-varying nonlinear control systems on time scales
    Bartosiewicz, Z.
    Pawluszewicz, E.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) : 961 - 968
  • [24] Forecasting the future: Is it possible for adiabatically time-varying nonlinear dynamical systems?
    Yang, Rui
    Lai, Ying-Cheng
    Grebogi, Celso
    CHAOS, 2012, 22 (03)
  • [25] Adaptive Control for A Class of Nonlinear Uncertain Dynamical Systems With Time-varying
    Zhang, Jie
    Wang, Xingxuan
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 2171 - 2176
  • [26] Finite-Time Nonconvex Optimization Using Time-Varying Dynamical Systems
    Nguyen, Lien T.
    Eberhard, Andrew
    Yu, Xinghuo
    Kruger, Alexander Y.
    Li, Chaojie
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) : 844 - 879
  • [27] Time-varying Projected Dynamical Systems with Applications to Feedback Optimization of Power Systems
    Hauswirth, Adrian
    Subotic, Irina
    Bolognani, Saverio
    Hug, Gabriela
    Dorfler, Florian
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3258 - 3263
  • [28] Parameter-Based Estimation of Block Time-Varying Channels in OTFS Modulation Systems
    Abufoul, Mohammed Kamel
    Tubail, Deeb Assad
    Zourob, Mohammed
    Ikki, Salama
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (04) : 1189 - 1193
  • [29] Reachable Set Estimation for a Class of Nonlinear Time-Varying Systems
    Sun, Yuangong
    Meng, Fanwei
    COMPLEXITY, 2017,
  • [30] Moving horizon estimation for nonlinear systems with time-varying parameters
    Schiller, Julian D.
    Mueller, Matthias A.
    IFAC PAPERSONLINE, 2024, 58 (18): : 341 - 348