Asymptotic Bounds on Graphical Partitions and Partition Comparability

被引:1
|
作者
Melczer, Stephen [1 ]
Michelen, Marcus [2 ]
Mukherjee, Somabha [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[3] Univ Penn, Wharton Sch, Dept Stat, 3730 Walnut St, Philadelphia, PA 19104 USA
关键词
D O I
10.1093/imrn/rnaa251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integer partition is called graphical if it is the degree sequence of a simple graph. We prove that the probability that a uniformly chosen partition of size n is graphical decreases to zero faster than n(-.003), answering a question of Pittel. A lower bound of n(-1/2) was proven by Erdos and Richmond, meaning our work demonstrates that the probability decreases polynomially. Our proof also implies a polynomial upper bound for the probability that two randomly chosen partitions are comparable in the dominance order.
引用
收藏
页码:2842 / 2860
页数:19
相关论文
共 50 条
  • [41] Linked partition ideals and Euclidean billiard partitions
    Chern, Shane
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [42] A partition statistic for partitions with even parts distinct
    Robert X. J. Hao
    [J]. Monatshefte für Mathematik, 2023, 201 : 1105 - 1123
  • [43] Linked partition ideals and Euclidean billiard partitions
    Shane Chern
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [44] CRANK 0 PARTITIONS AND THE PARITY OF THE PARTITION FUNCTION
    Kaavya, S. J.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (03) : 793 - 801
  • [45] A partition statistic for partitions with even parts distinct
    Hao, Robert X. J.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1105 - 1123
  • [46] ASYMPTOTIC FORMULA IN PARTITION THEORY
    PASSI, HA
    [J]. DUKE MATHEMATICAL JOURNAL, 1971, 38 (02) : 327 - &
  • [47] Better Bounds for k-Partitions of Graphs
    Xu, Baogang
    Yu, Xingxing
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (04): : 631 - 640
  • [48] Asymptotic distribution of the partition crank
    Asimina Hamakiotes
    Aaron Kriegman
    Wei-Lun Tsai
    [J]. The Ramanujan Journal, 2021, 56 : 803 - 820
  • [49] Asymptotic formulae for partition ranks
    Dousse, Jehanne
    Mertens, Michael H.
    [J]. ACTA ARITHMETICA, 2015, 168 (01) : 83 - 100
  • [50] Asymptotic distribution of the partition crank
    Hamakiotes, Asimina
    Kriegman, Aaron
    Tsai, Wei-Lun
    [J]. RAMANUJAN JOURNAL, 2021, 56 (03): : 803 - 820