APPLICATION OF NANOFLUIDS IN A SHELL-AND-TUBE HEAT EXCHANGER

被引:0
|
作者
Cox, Jonathan [1 ]
Kanjirakat, Anoop [1 ]
Sadr, Reza [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Innovations in the field of nanotechnology have potential to improve industrial productivity and performance. One promising applications of this emerging technology is using nanofluids with enhanced thermal properties. Nanofluids, engineered colloidal suspensions consisting of nano-sized particles (less than 100nm) dispersed in a basefluid, have shown potential as industrial cooling fluids due to the enhanced heat transfer characteristics. Experiments are conducted to compare the overall heat transfer coefficient and pressure drop of water vs. nanofluids in a laboratory scale industrial type shell and tube heat exchanger. Three mass particle concentrations, 2%, 4% and 6%, of SiO2-water nanofluids are formulated by dispersing 20 nm diameter nano particles in desalinated water. Nanofluid and tap water are then circulated in the cold and hot loops, respectively, of the heat exchanger to avoid direct particle deposition on heater surfaces. Interestingly, experimental result show both augmentation and deterioration of heat transfer coefficient for nanofluids depending on the flow rate through the heat exchangers. This trend is consistent with an earlier reported observation for heat transfer in micro channels. This trend may be explained by the counter effect of the changes in thermo-physical properties of fluids together with the fouling on the heat exchanger surfaces. The measured pressure drop in the nanofluids flow shows an increase when compared to that of basefluid that could limit the use of nanofluids in heat exchangers for industrial application.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Different tube bundles effect on the shell-and-tube heat exchanger performance
    Arani, Ali Akbar Abbasian
    Uosofvand, Hamed
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (12) : 3661 - 3688
  • [22] Shell-and-tube exchanger restoration
    Chemical Processing, 1998, 61 (08):
  • [23] Research progress of heat transfer enhancement of shell-and-tube heat exchanger
    Lin, Wenzhu
    Cao, Jiahao
    Fang, Xiaoming
    Zhang, Zhengguo
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2018, 37 (04): : 1276 - 1286
  • [24] An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger
    Wang, Simin
    Wen, Jian
    Li, Yanzhong
    APPLIED THERMAL ENGINEERING, 2009, 29 (11-12) : 2433 - 2438
  • [25] FLOW DISTRIBUTION ON THE SHELLSIDE OF A SHELL-AND-TUBE HEAT-EXCHANGER
    KEENE, LW
    DAVIES, TW
    GIBBONS, DB
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1993, 71 (A3): : 310 - 310
  • [26] Incorporating Fouling Modeling into Shell-and-Tube Heat Exchanger Design
    Nakao, Andressa
    Valdman, Andrea
    Costa, Andre L. H.
    Bagajewicz, Miguel J.
    Queiroz, Eduardo M.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (15) : 4377 - 4385
  • [27] Thermohydraulic Analysis of a Shell-and-Tube "Helical Baffles" Heat Exchanger
    Cucumo, M.
    Ferraro, V.
    Kaliakatsos, D.
    Mele, M.
    Galloro, A.
    Schimio, R.
    Le Pera, G.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2016, 34 (34) : S255 - S262
  • [28] Double Perforated Impingement Plate in Shell-and-Tube Heat Exchanger
    Al-Anizi, Salamah S.
    Al-Otaibi, Abdullah M.
    HEAT TRANSFER ENGINEERING, 2009, 30 (10-11) : 885 - 894
  • [29] PERFORMANCE ANALYSIS OF A PLASTIC SHELL-AND-TUBE HEAT-EXCHANGER
    MORCOS, VH
    SHAFEY, HM
    JOURNAL OF ELASTOMERS AND PLASTICS, 1995, 27 (02): : 200 - 213
  • [30] Temperature Field Prediction of Rectangular Shell-and-Tube Heat Exchanger
    Zhou, J. F.
    Li, Y.
    Gu, B. Q.
    Shao, C. L.
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2013, 135 (06):