Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid

被引:72
|
作者
Bavykina, Anastasiya V. [1 ]
Rozhko, Elena [1 ]
Goesten, Maarten G. [1 ,2 ]
Wezendonk, Tim [1 ]
Seoane, Beatriz [1 ]
Kapteijn, Freek [1 ]
Makkee, Michiel [1 ]
Gascon, Jorge [1 ]
机构
[1] Delft Univ Technol, Catalysis Engn ChemE, Julianalaan 136, NL-2628 BL Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem Mol Catalysis, Kranenveld 14, NL-5600 MB Eindhoven, Netherlands
关键词
carbon dioxide hydrogenation; catalyst shaping; covalent triazine frameworks; formic acid; CATALYTIC-HYDROGENATION; CO2; OXIDATION;
D O I
10.1002/cctc.201600419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile one-step method to shape covalent triazine frameworks (CTFs) for catalytic applications is reported. Phase inversion of the CTF powder by using a polyimide as a binder in a microfluidic device results in the formation of composite spheres with accessible CTF porosity and a high mechanical and thermal stability. The fabricated spheres can be used to host organometallic complexes. The obtained shaped catalysts, Ir@CTF spheres, are active and fully recyclable in the direct hydrogenation of carbon dioxide into formic acid under mild reaction conditions (20 bar and 50-90 degrees C) and in the dehydrogenation of formic acid.
引用
收藏
页码:2217 / 2221
页数:5
相关论文
共 50 条
  • [41] Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
    Bernskoetter, Wesley H.
    Hazari, Nilay
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) : 1049 - 1058
  • [42] Utilization of Carbon Dioxide as a Hydrogen Storage Material: Hydrogenation of Carbon Dioxide and Decomposition of Formic Acid Using Iridium Complex Catalysts
    Himeda, Yuichiro
    [J]. ADVANCES IN CO2 CONVERSION AND UTILIZATION, 2010, 1056 : 141 - 153
  • [43] ACTIVATION OF CARBON-DIOXIDE .4. RHODIUM-CATALYZES HYDROGENATION OF CARBON-DIOXIDE TO FORMIC-ACID
    LEITNER, W
    DINJUS, E
    GASSNER, F
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1994, 475 (1-2) : 257 - 266
  • [44] Enhanced activity for the catalytic hydrogenation of carbon dioxide to formic acid with sub-stoichiometric additives
    Drake, Jessica L.
    Manna, Cesar M.
    Vasilopoulos, Aristidis
    Byers, Jeffery A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [45] Carbon Dioxide Hydrogenation to Formic Acid with Self-Separating Product and Recyclable Catalyst Phase
    Ehmann, Kira R.
    Nisters, Arne
    Vorholt, Andreas J.
    Leitner, Walter
    [J]. CHEMCATCHEM, 2022, 14 (19)
  • [46] Catalyst design for highly efficient carbon dioxide hydrogenation to formic acid under buffering conditions
    Weilhard, Andreas
    Salzmann, Kevin
    Navarro, Miquel
    Dupont, Jairton
    Albrecht, Martin
    Sans, Victor
    [J]. JOURNAL OF CATALYSIS, 2020, 385 : 1 - 9
  • [47] Reversible hydrogenation/dehydrogenation of carbon dioxide/formic acid and aqueous alkali metal bicarbonates/formates
    Joo, Ferenc
    Kovacs, Henrietta
    Katho, Agnes
    Papp, Gabor
    Horvath, Henrietta
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [48] Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid
    Pandey, Preeti H.
    Pawar, Hitesh S.
    [J]. JOURNAL OF CO2 UTILIZATION, 2020, 41
  • [49] Towards a continuous formic acid synthesis: a two-step carbon dioxide hydrogenation in flow
    Reymond, Helena
    Jose Corral-Perez, Juan
    Urakawa, Atsushi
    von Rohr, Philipp Rudolf
    [J]. REACTION CHEMISTRY & ENGINEERING, 2018, 3 (06): : 912 - 919
  • [50] Covalent triazine frameworks - a sustainable perspective
    Krishnaraj, Chidharth
    Jena, Himanshu Sekhar
    Leus, Karen
    Van der Voort, Pascal
    [J]. GREEN CHEMISTRY, 2020, 22 (04) : 1038 - 1071