Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid

被引:72
|
作者
Bavykina, Anastasiya V. [1 ]
Rozhko, Elena [1 ]
Goesten, Maarten G. [1 ,2 ]
Wezendonk, Tim [1 ]
Seoane, Beatriz [1 ]
Kapteijn, Freek [1 ]
Makkee, Michiel [1 ]
Gascon, Jorge [1 ]
机构
[1] Delft Univ Technol, Catalysis Engn ChemE, Julianalaan 136, NL-2628 BL Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem Mol Catalysis, Kranenveld 14, NL-5600 MB Eindhoven, Netherlands
关键词
carbon dioxide hydrogenation; catalyst shaping; covalent triazine frameworks; formic acid; CATALYTIC-HYDROGENATION; CO2; OXIDATION;
D O I
10.1002/cctc.201600419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile one-step method to shape covalent triazine frameworks (CTFs) for catalytic applications is reported. Phase inversion of the CTF powder by using a polyimide as a binder in a microfluidic device results in the formation of composite spheres with accessible CTF porosity and a high mechanical and thermal stability. The fabricated spheres can be used to host organometallic complexes. The obtained shaped catalysts, Ir@CTF spheres, are active and fully recyclable in the direct hydrogenation of carbon dioxide into formic acid under mild reaction conditions (20 bar and 50-90 degrees C) and in the dehydrogenation of formic acid.
引用
收藏
页码:2217 / 2221
页数:5
相关论文
共 50 条
  • [1] Covalent triazine frameworks for carbon dioxide capture
    Wang, Han
    Jiang, Danni
    Huang, Danlian
    Zeng, Guangming
    Xu, Piao
    Lai, Cui
    Chen, Ming
    Cheng, Min
    Zhang, Chen
    Wang, Ziwei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) : 22848 - 22870
  • [2] Continuous Hydrogenation of Carbon Dioxide to Formic Acid and Methyl Formate by a Molecular Iridium Complex Stably Heterogenized on a Covalent Triazine Framework
    Jose Corral-Perez, Juan
    Billings, Amelia
    Stoian, Dragos
    Urakawa, Atsushi
    [J]. CHEMCATCHEM, 2019, 11 (19) : 4725 - 4730
  • [3] Catalytic Hydrogenation of Carbon Dioxide to Formic Acid
    Behr, Arno
    Nowakowski, Kristina
    [J]. CO2 CHEMISTRY, 2014, 66 : 223 - 258
  • [4] Hydrogenation of carbon dioxide into formic acid on ruthenium macrocomplexes
    Egazar'yants, SV
    Karakhanov, EA
    Kardashev, SV
    Maksimov, AL
    Minos'yants, SS
    [J]. PETROLEUM CHEMISTRY, 2002, 42 (06) : 414 - 417
  • [5] Direct homogeneous catalytic carbon dioxide hydrogenation to formic acid: The reversible formic acid - carbon dioxide/hydrogen cycle
    Laurenczy, Gabor
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [6] Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol
    Bello, T. O.
    Bresciani, A. E.
    Nascimento, C. A. O.
    Alves, R. M. B.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2021, 239
  • [8] Pd Active Sites on Covalent Triazine Frameworks for Catalytic Hydrogen Production from Formic Acid
    Bulushev, Dmitri A.
    Golub, Fedor S.
    Trubina, Svetlana V.
    Zvereva, Valentina V.
    Gerasimov, Evgeny Y.
    Prosvirin, Igor P.
    Navlani-Garcia, Miriam
    Jena, Himanshu Sekhar
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 13551 - 13560
  • [9] Covalent triazine frameworks supported CoPd nanoparticles for boosting hydrogen generation from formic acid
    Feng, Tao
    Wang, Jun-Min
    Gao, Shu-Tao
    Feng, Cheng
    Shang, Ning-Zhao
    Wang, Chun
    Li, Xue-Li
    [J]. APPLIED SURFACE SCIENCE, 2019, 469 : 431 - 436
  • [10] Ionothermal synthesis of phosphonitrilic-core covalent triazine frameworks for carbon dioxide capture
    Rangaraj, Vengatesan M.
    Reddy, K. Suresh Kumar
    Karanikolos, Georgios N.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 429