We introduce a hyperbolic Gauss map into the Poincare disk for any surface in H-2 x R with regular vertical projection, and prove that if the surface has constant mean curvature H = 1/2, this hyperbolic Gauss map is harmonic. Conversely, we show that every nowhere conformal harmonic map from an open simply connected Riemann surface I into the Poincare disk is the hyperbolic Gauss map of a two-parameter family of such surfaces. As an application we obtain that any holomorphic quadratic differential on Sigma can be realized as the Abresch-Rosenberg holomorphic differential of some, and generically infinitely many, complete surfaces with H = 1/2 in H-2 x R. A similar result applies to minimal surfaces in the Heisenberg group Nib. Finally, we classify all complete minimal vertical graphs in H-2 x R.
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
Bueno, Antonio
Ortiz, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
机构:
Univ Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, FranceUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France
Hauswirth, Laurent
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math, F-75005 Paris, FranceUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France
Rosenberg, Harold
Spruck, Joel
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USAUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France