Recent studies have demonstrated the potential of dynamic contrast-enhanced magnetic resonance Imaging (MRI) describing pulmonary perfusion. However, breathing motion, susceptibility artifacts, and a low signal-to-noise ratio (SNR) make automatic pixel-by-pixel analysis difficult. In the present work, we propose a novel method to compensate for breathing motion. In order to test the feasibility of this method, we enrolled 53 patients with pulmonary embolism (N = 24), chronic obstructive pulmonary disease (COPD) (N = 14), and acute pneumonia (N = 15). A crucial part of the method, an automatic diaphragm detection algorithm, was evaluated in all 53 patients by two Independent observers. The accuracy of the method to detect the diaphragm showed a success rate of 92%. Furthermore, a Bayesian noise reduction technique was implemented and tested. This technique significantly reduced the noise level without removing important clinical information. In conclusion, the combination of a motion correction method and a Bayesian noise reduction method offered a rapid, semiautomatic pixel-by-pixel analysis of the lungs with great potential for research and clinical use. (C) 2001 Wiley-Liss, Inc.