The local limit of random sorting networks

被引:9
|
作者
Angel, Omer [1 ]
Dauvergne, Duncan [2 ]
Holroyd, Alexander E. [3 ]
Virag, Balint [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Ctr Math Sci, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
Sorting network; Random sorting network; Reduced decomposition; Young tableau; Local limit;
D O I
10.1214/18-AIHP887
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A sorting network is a geodesic path from 12 ... n to n ... 21 in the Cayley graph of S-n generated by adjacent transpositions. For a uniformly random sorting network, we establish the existence of a local limit of the process of space-time locations of transpositions in a neighbourhood of an for a is an element of [0, 1] as n -> infinity. Here time is scaled by a factor of 1/n and space is not scaled. The limit is a swap process U on Z. We show that U is stationary and mixing with respect to the spatial shift and has time-stationary increments. Moreover, the only dependence on a is through time scaling by a factor of root a(1 - a). To establish the existence of U, we find a local limit for staircase-shaped Young tableaux. These Young tableaux are related to sorting networks through a bijection of Edelman and Greene.
引用
收藏
页码:412 / 440
页数:29
相关论文
共 50 条
  • [31] Random Walks on Local Optima Networks
    Tomassini, Marco
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [32] A LOCAL LIMIT THEOREM FOR RANDOM WALKS IN RANDOM SCENERY AND ON RANDOMLY ORIENTED LATTICES
    Castell, Fabienne
    Guillotin-Plantard, Nadine
    Pene, Francoise
    Schapira, Bruno
    ANNALS OF PROBABILITY, 2011, 39 (06): : 2079 - 2118
  • [33] Local Limit Theorems for random walks in a 1D random environment
    Dolgopyat, D.
    Goldsheid, I.
    ARCHIV DER MATHEMATIK, 2013, 101 (02) : 191 - 200
  • [34] Local Limit Theorems for random walks in a 1D random environment
    D. Dolgopyat
    I. Goldsheid
    Archiv der Mathematik, 2013, 101 : 191 - 200
  • [35] AN EVALUATION OF SORTING ALGORITHMS FOR COMMON-BUS LOCAL NETWORKS
    MIKKILINENI, KP
    SU, SYW
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1988, 5 (01) : 59 - 81
  • [36] Scaling limit of local time of Sinai’s random walk
    Wenming Hong
    Hui Yang
    Ke Zhou
    Frontiers of Mathematics in China, 2015, 10 : 1313 - 1324
  • [37] LOCAL LIMIT-THEOREMS FOR FUNCTIONALS OF RANDOM-PROCESSES
    DAVYDOV, YA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1988, 33 (04) : 732 - 738
  • [38] A local central limit theorem for random walks on expander graphs
    Chiclana, Rafael
    Peres, Yuval
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [39] LOCAL CENTRAL LIMIT-THEOREM FOR A GIBBS RANDOM FIELD
    CAMPANINO, M
    CAPOCACCIA, D
    TIROZZI, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) : 125 - 132
  • [40] LOCAL LIMIT THEOREMS FOR NONIDENTICALLY DISTRIBUTED LATTICE RANDOM VARIABLES
    MASON, JD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 226 - &