Invertibility of Frame Operators on Besov-Type Decomposition Spaces

被引:3
|
作者
Romero, Jose Luis [1 ,2 ]
van Velthoven, Jordy Timo [1 ,3 ]
Voigtlaender, Felix [4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
[3] Delft Univ Technol, Mekelweg 4,Bldg 36, NL-2628 CD Delft, Netherlands
[4] Katholische Univ Eichstatt Ingolstadt, Lehrstuhl Reliable Machine Learning, Ostenstr 26, D-85072 Eichstatt, Germany
基金
奥地利科学基金会;
关键词
Atomic decompositions; Banach frames; Besov-type decomposition space; Canonical dual frame; Walnut-Daubechies representation; Frame operator; Generalized shift-invariant systems; ANISOTROPIC BESOV; INVARIANT-SYSTEMS; TRIEBEL-LIZORKIN; BANACH FRAMES; OVERCOMPLETENESS; LOCALIZATION; DENSITY;
D O I
10.1007/s12220-022-00887-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an extension of the Walnut-Daubechies criterion for the invertibility of frame operators. The criterion concerns general reproducing systems and Besov-type spaces. As an application, we conclude that L-2 frame expansions associated with smooth and fast-decaying reproducing systems on sufficiently fine lattices extend to Besov-type spaces. This simplifies and improves recent results on the existence of atomic decompositions, which only provide a particular dual reproducing system with suitable properties. In contrast, we conclude that the L-2 canonical frame expansions extend to many other function spaces, and, therefore, operations such as analyzing using the frame, thresholding the resulting coefficients, and then synthesizing using the canonical dual frame are bounded on these spaces.
引用
收藏
页数:72
相关论文
共 50 条