A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification

被引:126
|
作者
Chakraborty, D [1 ]
Pal, NR [1 ]
机构
[1] Indian Stat Inst, Elect & Commun Sci Unit, Kolkata 700108, W Bengal, India
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2004年 / 15卷 / 01期
关键词
classification; feature analysis; neuro-fuzzy systems; rule extraction;
D O I
10.1109/TNN.2003.820557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most methods of classification either ignore feature analysis or do it in a separate phase, offline prior to the main classification task. This paper proposes a neuro-fuzzy scheme for designing a classifier along with feature selection. It is a four-layered. feed-forward network for realizing a fuzzy rule-based classifier. The network is trained by error backpropagation in three phases. In the first phase, the network learns the important features and the classification rules. In the subsequent phases, the network is pruned to an "optimal" architecture that represents an "optimal" set of rules. Pruning is found to drastically reduce the size of the network without degrading the performance. The pruned network is further tuned to improve performance. The rules learned by the network can be easily read from the network. The system is tested on both synthetic and real data sets and found to perform quite well.
引用
收藏
页码:110 / 123
页数:14
相关论文
共 50 条
  • [31] Neuro-fuzzy feature selection approach based on linguistic hedges for medical diagnosis
    Azar, Ahmad Taher
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2014, 22 (03) : 195 - 206
  • [32] A genetic algorithm for feature selection in a neuro-fuzzy OCR system
    Sural, S
    Das, PK
    SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 987 - 991
  • [33] Adaptive fuzzy rule-based classification systems
    Nozaki, K
    Ishibuchi, H
    Tanaka, H
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) : 238 - 250
  • [34] A Fuzzy Rule-Based System for Classification of Diabetes
    Aamir, Khalid Mahmood
    Sarfraz, Laiba
    Ramzan, Muhammad
    Bilal, Muhammad
    Shafi, Jana
    Attique, Muhammad
    SENSORS, 2021, 21 (23)
  • [35] CLASSIFICATION CONFIDENCE OF FUZZY RULE-BASED CLASSIFIERS
    Nakashima, Tomoharu
    Ghosh, Ashish
    PROCEEDINGS - 25TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION, ECMS 2011, 2011, : 466 - 471
  • [36] A Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems
    Su, Miin-Tsair
    Chen, Cheng-Hung
    Lin, Cheng-Jian
    Lin, Chin-Teng
    APPLIED SOFT COMPUTING, 2011, 11 (08) : 4847 - 4858
  • [37] Feature Subset Selection with Optimal Adaptive Neuro-Fuzzy Systems for Bioinformatics Gene Expression Classification
    Hilal, Anwer Mustafa
    Malibari, Areej A.
    Obayya, Marwa
    Alzahrani, Jaber S.
    Alamgeer, Mohammad
    Mohamed, Abdullah
    Motwakel, Abdelwahed
    Yaseen, Ishfaq
    Hamza, Manar Ahmed
    Zamani, Abu Sarwar
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [38] Quaternion Neuro-Fuzzy Learning Algorithm for Fuzzy Rule Generation
    Hata, Ryusuke
    Islam, Md Monirul
    Murase, Kazuyuki
    2013 SECOND INTERNATIONAL CONFERENCE ON ROBOT, VISION AND SIGNAL PROCESSING (RVSP), 2013, : 61 - 65
  • [39] From Fuzzy Clustering to a Fuzzy Rule-Based Fault Classification Model
    Enrico Zio
    Piero Baraldi
    Irina Crenguta Popescu
    International Journal of Computational Intelligence Systems, 2008, 1 : 60 - 76
  • [40] FROM FUZZY CLUSTERING TO A FUZZY RULE-BASED FAULT CLASSIFICATION MODEL
    Zio, Enrico
    Baraldi, Piero
    Popescu, Irina Crenguta
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2008, 1 (01) : 60 - 76