A comparison of strategies for Markov chain Monte!Carlo computation in quantitative genetics

被引:17
|
作者
Waagepetersen, Rasmus [1 ]
Ibanez-Escriche, Noelia [2 ]
Sorensen, Daniel [3 ]
机构
[1] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg, Denmark
[2] IRTA, Lleida 25198, Spain
[3] Danish Inst Agr Sci, Dept Biochem & Genet, DK-8830 Tjele, Denmark
关键词
Langevin-Hastings; Markov chain Monte Carlo; normal approximation; proposal distributions; reparameterization;
D O I
10.1051/gse:2007042
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 50 条
  • [1] A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
    Rasmus Waagepetersen
    Noelia Ibánẽz-Escriche
    Daniel Sorensen
    [J]. Genetics Selection Evolution, 40 (2)
  • [2] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [3] A note on Markov chain Monte Carlo sweep strategies
    Levine, RA
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (04) : 253 - 262
  • [4] Computation in Bayesian econometrics: An introduction to Markov chain Monte Carlo
    Albert, J
    Chib, S
    [J]. ADVANCES IN ECONOMETRICS, 1996, 11 : 3 - 24
  • [5] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [6] Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics
    Wu, Xiao-Lin
    Sun, Chuanyu
    Beissinger, Timothy M.
    Rosa, Guilherme J. M.
    Weigel, Kent A.
    Gatti, Natalia de Leon
    Gianola, Daniel
    [J]. GENETICS SELECTION EVOLUTION, 2012, 44
  • [7] Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics
    Xiao-Lin Wu
    Chuanyu Sun
    Timothy M Beissinger
    Guilherme JM Rosa
    Kent A Weigel
    Natalia de Leon Gatti
    Daniel Gianola
    [J]. Genetics Selection Evolution, 44
  • [8] Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation
    Wu Changye
    Robert, Christian P.
    [J]. CASE STUDIES IN APPLIED BAYESIAN DATA SCIENCE: CIRM JEAN-MORLET CHAIR, FALL 2018, 2020, 2259 : 89 - 119
  • [9] Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    Green, PJ
    [J]. BIOMETRIKA, 1995, 82 (04) : 711 - 732
  • [10] Quantitative convergence assessment for Markov chain Monte Carlo via cusums
    Brooks, SP
    [J]. STATISTICS AND COMPUTING, 1998, 8 (03) : 267 - 274