Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation

被引:1
|
作者
Wu Changye [1 ]
Robert, Christian P. [1 ,2 ]
机构
[1] Univ Paris Dauphine PSL, Paris, France
[2] Univ Warwick, Coventry, W Midlands, England
关键词
Monte Carlo methods; MCMC algorithms; Bouncy particle sampler; PDMP; Big Data; COVARIANCE STRUCTURE; GIBBS SAMPLER;
D O I
10.1007/978-3-030-42553-1_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This chapter briefly recalls the major simulation based methods for conducting Bayesian computation, before focusing on partly deterministic Markov processes and a novel modification of the bouncy particle sampler that offers an interesting alternative when dealing with large datasets.
引用
收藏
页码:89 / 119
页数:31
相关论文
共 50 条