Divergence estimation of continuous distributions based on data-dependent partitions

被引:117
|
作者
Wang, Q [1 ]
Kulkarni, SR [1 ]
Verdú, S [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
bias correction; data-dependent partition; divergence; Radon-Nikodym derivative; stationary and ergodic data; universal estimation of information measures;
D O I
10.1109/TIT.2005.853314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a universal estimator of the divergence D(P parallel to Q) for two arbitrary continuous distributions P and Q satisfying certain regularity conditions. This algorithm, which observes independent and identically distributed (i.i.d.) samples from both P and Q, is based on the estimation of the Radon-Nikodym derivative dP/dQ via a data-dependent partition of the observation space. Strong convergence of this estimator is proved with an empirically equivalent segmentation of the space. This basic estimator is further improved by adaptive partitioning schemes and by bias correction. The application of the algorithms to data with memory is also investigated. In the simulations, we compare our estimators with the direct plug-in estimator and estimators based on other partitioning approaches. Experimental results show that our methods achieve the best convergence performance in most of the tested cases.
引用
收藏
页码:3064 / 3074
页数:11
相关论文
共 50 条
  • [1] Universal estimation of divergence for continuous distributions via data-dependent partitions
    Wang, Q
    Kulkarni, SR
    Verdú, S
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 152 - 156
  • [2] Information divergence estimation based on data-dependent partitions
    Silva, Jorge
    Narayanan, Shrikanth S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3180 - 3198
  • [3] Histogram regression estimation using data-dependent partitions
    Nobel, A
    [J]. ANNALS OF STATISTICS, 1996, 24 (03): : 1084 - 1105
  • [4] MULTIVARIATE HISTOGRAMS WITH DATA-DEPENDENT PARTITIONS
    Klemela, Jussi
    [J]. STATISTICA SINICA, 2009, 19 (01) : 159 - 176
  • [5] Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications
    Silva, Jorge
    Narayanan, Shrikanth
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3497 - 3511
  • [6] Kullback-Leibler Divergence Estimation of Continuous Distributions
    Perez-Cruz, Fernando
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1666 - 1670
  • [7] Minimax Optimal Estimation of KL Divergence for Continuous Distributions
    Zhao, Puning
    Lai, Lifeng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7787 - 7811
  • [8] Universal consistency of data-driven partitions for divergence estimation
    Silva, Jorge
    Narayanan, Shrikanth
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2021 - 2025
  • [9] A cipher based on data-dependent permutations
    Moldovyan, AA
    Moldovyan, NA
    [J]. JOURNAL OF CRYPTOLOGY, 2002, 15 (01) : 61 - 72
  • [10] Data-Dependent Label Distribution Learning for Age Estimation
    He, Zhouzhou
    Li, Xi
    Zhang, Zhongfei
    Wu, Fei
    Geng, Xin
    Zhang, Yaqing
    Yang, Ming-Hsuan
    Zhuang, Yueting
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) : 3846 - 3858