MULTIVARIATE HISTOGRAMS WITH DATA-DEPENDENT PARTITIONS

被引:0
|
作者
Klemela, Jussi [1 ]
机构
[1] Univ Oulu, Dept Math Sci, FIN-90014 Oulu, Finland
关键词
Adaptive estimation; dyadic CART; multivariate density estimation; presmoothing; tree structured estimators; SELECTION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation of multivariate densities with histograms which are based on data-dependent partitions. We find data-dependent partitions by minimizing a complexity-penalized error criterion. The estimator may also be characterized as a series estimator whose basis is chosen empirically. We show that the estimator achieves minimax rates of convergence tip to a logarithmic factor over a scale of smoothness classes containing functions with anisotropic and spatially varying smoothness. The method may also be viewed as based on the presmoothing of data. We show how the optimal amount of presmoothing depends on the spatial inhomogeneity of the density.
引用
收藏
页码:159 / 176
页数:18
相关论文
共 50 条
  • [1] Information divergence estimation based on data-dependent partitions
    Silva, Jorge
    Narayanan, Shrikanth S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3180 - 3198
  • [2] Histogram regression estimation using data-dependent partitions
    Nobel, A
    [J]. ANNALS OF STATISTICS, 1996, 24 (03): : 1084 - 1105
  • [3] Divergence estimation of continuous distributions based on data-dependent partitions
    Wang, Q
    Kulkarni, SR
    Verdú, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (09) : 3064 - 3074
  • [4] Universal estimation of divergence for continuous distributions via data-dependent partitions
    Wang, Q
    Kulkarni, SR
    Verdú, S
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 152 - 156
  • [5] Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications
    Silva, Jorge
    Narayanan, Shrikanth
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3497 - 3511
  • [6] Best data-dependent triangulations
    Alboul, L
    Kloosterman, G
    Traas, C
    van Damme, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 1 - 12
  • [7] Predicting data-dependent jitter
    Buckwalter, J
    Analui, B
    Hajimiri, A
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (09) : 453 - 457
  • [8] Data-dependent metric filtering
    Mic, Vladimir
    Zezula, Pavel
    [J]. INFORMATION SYSTEMS, 2022, 108
  • [9] Uniform Histograms for Change Detection in Multivariate Data
    Boracchi, Giacomo
    Cervellera, Cristiano
    Maccio, Danilo
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1732 - 1739
  • [10] Data identifiability for Data-Dependent Superimposed Training
    Whitworth, T.
    Ghogho, M.
    McLernon, D. C.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 2545 - 2550