Unsupervised domain adaptation for global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data

被引:29
|
作者
Hafner, Sebastian [1 ]
Ban, Yifang [1 ]
Nascetti, Andrea [1 ]
机构
[1] KTH Royal Inst Technol, Div Geoinformat, S-11428 Stockholm, Sweden
关键词
Built-up area mapping; Deep learning; Data fusion; Semi-supervised learning; Domain adaptation; Semantic segmentation; BUILT-UP; HUMAN-SETTLEMENTS; DATA FUSION; LAND-COVER; CLASSIFICATION; IMAGES; INDEX; AGREEMENT; SUPPORT; FOREST;
D O I
10.1016/j.rse.2022.113192
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate and up-to-date maps of built-up areas are crucial to support sustainable urban development. Earth Observation (EO) is a valuable data source to cover this demand. In particular, Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) missions offer new opportunities to map built-up areas on a global scale. Using Sentinel-2 images, recent urban mapping efforts achieved promising results by training Convolutional Neural Networks (CNNs) on available built-up data. However, these results strongly depend on the availability of local reference data for fully supervised training or assume that the application of CNNs to unseen areas (i.e. across-region generalization) produces satisfactory results. To alleviate these short-comings, it is desirable to leverage Semi-Supervised Learning (SSL) algorithms that can take advantage of un-labeled data, especially because satellite data is plentiful. In this paper, we propose a novel Domain Adaptation (DA) approach using SSL that jointly exploits Sentinel-1 SAR and Sentinel-2 MSI to improve across-region generalization for built-up area mapping. Specifically, two identical sub-networks are incorporated into the proposed model to perform built-up area segmentation from SAR and optical images separately. Assuming that consistent built-up area segmentation should be obtained across data modality, we design an unsupervised loss for unlabeled data that penalizes inconsistent segmentation from the two sub-networks. Therefore, we propose to use complementary data modalities as real-world perturbations for consistency regularization. For the final prediction, the model takes both data modalities into account. Experiments conducted on a test set comprised of sixty representative sites across the world showed that the proposed DA approach achieves strong improvements (F1 score 0.694) over fully supervised learning from Sentinel-1 SAR data (F1 score 0.574), Sentinel-2 MSI data (F1 score 0.580) and their input-level fusion (F1 score 0.651). To demonstrate the effectiveness of DA, we also performed a comparison with two state-of-the-art products, namely GHS-BUILT-S2 and WSF 2019, on the test set. The comparison showed that our model is capable of producing built-up area maps with comparable or even better quality than the state-of-the-art global human settlement maps. Therefore, the multi-modal DA offers great potential to be adapted to produce easily updateable human settlements maps at a global scale.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data
    Huang, Minmin
    Jin, Shuanggen
    [J]. REMOTE SENSING, 2020, 12 (13)
  • [42] Identification of Urban Green Space Types and Estimation of Above-Ground Biomass Using Sentinel-1 and Sentinel-2 Data
    Xiao, Jue
    Chen, Longqian
    Zhang, Ting
    Li, Long
    Yu, Ziqi
    Wu, Ran
    Bai, Luofei
    Xiao, Jianying
    Chen, Longgao
    [J]. FORESTS, 2022, 13 (07):
  • [43] Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data
    Cai, Bowen
    Shao, Zhenfeng
    Huang, Xiao
    Zhou, Xuechao
    Fang, Shenghui
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [44] Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation
    Nativel, Simon
    Ayari, Emna
    Rodriguez-Fernandez, Nemesio
    Baghdadi, Nicolas
    Madelon, Remi
    Albergel, Clement
    Zribi, Mehrez
    [J]. REMOTE SENSING, 2022, 14 (10)
  • [45] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    [J]. Arabian Journal of Geosciences, 2022, 15 (20)
  • [46] On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data
    Possa, Evelyn M.
    Maillard, Philippe
    Gomes, Marilia F.
    Marques Ferreira, Igor Silva
    Leao, Guilherme de Oliveira
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [47] Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data
    Crabbe, Richard A.
    Lamb, David
    Edwards, Clare
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 84
  • [48] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Monde Rapiya
    Abel Ramoelo
    Wayne Truter
    [J]. Environmental Monitoring and Assessment, 2023, 195
  • [49] ANALYSING FLOOD AFFECTED REGION IN MERIC RIVER BASIN USING SENTINEL-1 AND SENTINEL-2 DATA
    Senel, Gizem
    Eroglu, Mehmet
    Balcik, Filiz Bektas
    Goksel, Cigdem
    [J]. 8TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOL. 1, 2020, : 710 - 716
  • [50] Integrating the Sentinel-1, Sentinel-2 and topographic data into soybean yield modelling using machine learning
    Amankulova, Khilola
    Farmonov, Nizom
    Omonov, Khasan
    Abdurakhimova, Mokhigul
    Mucsi, Laszlo
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 4052 - 4066