PLS algorithm for radial basis function networks

被引:0
|
作者
Wang, Y [1 ]
Rong, G [1 ]
Wang, SQ [1 ]
机构
[1] Zhejiang Univ, Natl Key Lab Ind Control Ind, Hangzhou 310027, Peoples R China
关键词
radial basis function network; partial least squares (PLS) algorithm; nonlinear modeling; product quality predictor;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The PLS (partial least squares) algorithm is introduced into the radial basis function (RBF) networks to construct MIMO nonlinear models. The PLS algorithm projects the correlated basis functions and the outputs down to a number of principal factors to construct parsimonious models. Example of nonlinear modeling is used to demonstrate better generalization and noise tolerable performance of the proposed algorithm than the full RBF network models. Finally, it is used as a product quality predictor for industrial distillation columns.
引用
收藏
页码:4748 / 4753
页数:6
相关论文
共 50 条
  • [41] APPROXIMATION AND RADIAL-BASIS-FUNCTION NETWORKS
    PARK, J
    SANDBERG, IW
    [J]. NEURAL COMPUTATION, 1993, 5 (02) : 305 - 316
  • [42] Bipolar radial basis function inferencing networks
    Raghuvanshi, PS
    Kumar, S
    [J]. NEUROCOMPUTING, 1997, 14 (02) : 195 - 204
  • [43] LEARNING AND GENERALIZATION IN RADIAL BASIS FUNCTION NETWORKS
    FREEMAN, JAS
    SAAD, D
    [J]. NEURAL COMPUTATION, 1995, 7 (05) : 1000 - 1020
  • [44] ON THE STATISTICAL PHYSICS OF RADIAL BASIS FUNCTION NETWORKS
    HOLDEN, SB
    NIRANJAN, M
    [J]. NEURAL PROCESSING LETTERS, 1995, 2 (04) : 16 - 19
  • [45] Radial Basis Function Networks with Optimal Kernels
    Krzyzak, Adam
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 860 - 863
  • [46] Learning identity with radial basis function networks
    Howell, AJ
    Buxton, H
    [J]. NEUROCOMPUTING, 1998, 20 (1-3) : 15 - 34
  • [47] Qualitative validation of radial basis function networks
    Billings, SA
    Zheng, GL
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1999, 13 (02) : 335 - 349
  • [48] Cosine radial basis function neural networks
    Randolph-Gips, MM
    Karayiannis, NB
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 96 - 101
  • [49] Learning methods for radial basis function networks
    Neruda, R
    Kudová, P
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (07): : 1131 - 1142
  • [50] Robust radial basis function neural networks
    Lee, CC
    Chung, PC
    Tsai, JR
    Chang, CI
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06): : 674 - 685