Designable 3D Microshapes Fabricated at the Intersection of Structured Flow and Optical Fields

被引:20
|
作者
Yuan, Rodger [1 ]
Nagarajan, Maxwell B. [2 ]
Lee, Jaemyon [3 ,4 ]
Voldman, Joel [3 ,4 ]
Doyle, Patrick S. [2 ]
Fink, Yoel [1 ,5 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[5] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
3D; fiber; hydrogel; optofluidics; particle; LITHOGRAPHY; MICROPARTICLES; SHAPE; MICROFIBERS; FIBERS;
D O I
10.1002/smll.201803585
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D structures with complex geometric features at the microscale, such as microparticles and microfibers, have promising applications in biomedical engineering, self-assembly, and photonics. Fabrication of complex 3D microshapes at scale poses a unique challenge; high-resolution methods such as two-photon-polymerization have print speeds too low for high-throughput production, while top-down approaches for bulk processing using microfabricated template molds have limited control of microstructure geometries over multiple axes. Here, a method for microshape fabrication is presented that combines a thermally drawn transparent fiber template with a masked UV-photopolymerization approach to enable biaxial control of microshape fabrication. Using this approach, high-resolution production of complex microshapes not producible using alternative methods is demonstrated, such as octahedrons, dreidels, and axially asymmetric fibers, at throughputs as high as 825 structures/minute. Finally, the fiber template is functionalized with conductive electrodes to enable hierarchical subparticle localization using dielectrophoretic forces.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Self-imaging vectorial singularity networks in 3d structured light fields
    Droop, Ramon
    Otte, Eileen
    Denz, Cornelia
    JOURNAL OF OPTICS, 2021, 23 (07)
  • [32] Dynamic complex optical fields for optical manipulation, 3D microscopy and photostimulation of neurotransmitters
    Daria, Vincent Ricardo
    Stricker, Christian
    Bekkers, John
    Redman, Steve
    Bachor, Hans
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION VII, 2010, 7762
  • [33] Enantioselective optical gradient forces using 3D structured vortex light
    Forbes, Kayn A.
    Green, Dale
    Optics Communications, 2022, 515
  • [34] Optical transfer function engineering for a tunable 3D structured illumination microscope
    Shabani, Hasti
    Doblas, Ana
    Saavedra, Genaro
    Preza, Chrysanthe
    OPTICS LETTERS, 2019, 44 (07) : 1560 - 1563
  • [35] Enantioselective optical gradient forces using 3D structured vortex light
    Forbes, Kayn A.
    Green, Dale
    OPTICS COMMUNICATIONS, 2022, 515
  • [36] DETECTION OF NONRIGID 3D MOTION FROM FLOW-FIELDS
    HOGERVORST, MA
    KAPPERS, AML
    KOENDERINK, JJ
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1995, 36 (04) : S361 - S361
  • [37] 3D OPTICAL FLOW ESTIMATION COMBINING 3D CENSUS SIGNATURE AND TOTAL VARIATION REGULARIZATION
    Manandhar, Sandeep
    Bouthemy, Patrick
    Welf, Eric
    Roudot, Philippe
    Kervrann, Charles
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 965 - 968
  • [38] Parallel Processor for 3D Recovery from Optical Flow
    Hugo Barron-Zambrano, Jose
    Martin del Campo-Ramirez, Fernando
    Arias-Estrada, Miguel
    INTERNATIONAL JOURNAL OF RECONFIGURABLE COMPUTING, 2009, 2009
  • [39] 3D Sign Language Translator Using Optical Flow
    Sigit, Riyanto
    Setiawardhana
    Kartika, Dyah Rahma
    2016 INTERNATIONAL ELECTRONICS SYMPOSIUM (IES), 2016, : 262 - 266
  • [40] A sparse optical flow inspired method for 3D velocimetry
    George Lu
    Adam Steinberg
    Masayuki Yano
    Experiments in Fluids, 2023, 64