The P3 intersection graph

被引:0
|
作者
Menon, Manju K. [1 ]
Vijayakumar, A. [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Math, Cochin 682022, Kerala, India
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a new graph operator called the P-3 intersection graph, P-3(G)- the intersection graph of all induced 3-paths in G. A characterization of graphs G for which P-3 (G) is bipartite is given. Forbidden subgraph characterization for P-3(G) having properties of being chordal, H-free, complete are also obtained. For integers a and b with a > 1 and b >= a - 1, it is shown that there exists a graph G such that chi(G) = a, chi(P-3(G)) = b, where chi is the chromatic number of G. For the domination number gamma(G), we construct graphs G such that gamma(G) = a and gamma(P-3(G)) = b for any two positive numbers a > 1 and b. Similar construction for the independence number and radius, diameter relations are also discussed.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 50 条
  • [21] CONCUSSION HISTORY IS ASSOCIATED WITH REDUCTIONS IN P3 AMPLITUDE AND INCREASED P3 LATENCY
    Olson, Ryan
    Sheridan, Madalyn
    Godby, Cheyenne
    Smith, Payton
    Magera, Nicholas
    [J]. PSYCHOPHYSIOLOGY, 2022, 59 : S174 - S174
  • [22] Canonical curves in P3
    Rojas, J
    Vainsencher, I
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 333 - 366
  • [23] Moduli of surfaces in P3
    DeVleming, Kristin
    [J]. COMPOSITIO MATHEMATICA, 2022, 158 (06) : 1329 - 1374
  • [24] P3 AND (DE)ACTIVATION
    ROTH, WT
    FORD, JM
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1988, 11 (03) : 393 - 394
  • [25] CONGRUENCES OF CONICS IN P3
    ISKOVSKIH, VA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (06): : 57 - 62
  • [26] Reinstating the Novelty P3
    Barry, Robert J.
    Steiner, Genevieve Z.
    De Blasio, Frances M.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [27] Chimeric P3 antibody
    Vázquez, AM
    [J]. HYBRIDOMA AND HYBRIDOMICS, 2003, 22 (04): : 276 - 276
  • [28] On the fattening of lines in P3
    Janssen, Mike
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 1055 - 1061
  • [29] GYROTRANSVERSALS OF ORDER p3
    Gurjar, Ramjash
    Lal, Ratan
    Kakkar, Vipul
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 17 (01): : 85 - 97
  • [30] The Fixation and Saccade P3
    Dandekar, Sangita
    Ding, Jian
    Privitera, Claudio
    Carney, Thom
    Klein, Stanley A.
    [J]. PLOS ONE, 2012, 7 (11):