The Picard-Vessiot antiderivative closure

被引:5
|
作者
Magid, AR
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[2] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
D O I
10.1006/jabr.2001.8876
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
F is a differential field of characteristic zero with algebraically closed field of constants C. A Picard-Vessiot antiderivative closure of F is a differential field extension E superset of F which is a union of Picard-Vessiot extensions of F, each obtained by iterated adjunction of antiderivatives, and such that every such Picard-Vessiot extension of F has an isomorphic copy in E. The group G of differential automorphisms of E over F is shown to be prounipotent. When C is the complex numbers and F = C(t) the rational functions in one variable, G is shown to be free prounipotent. (C) 2001 Academic Press.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] ON σδ-PICARD-VESSIOT EXTENSIONS
    Nieto, Ana Peon
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1242 - 1249
  • [2] Picard-Vessiot theory and integrability
    Morales-Ruiz, Juan J.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 : 314 - 343
  • [3] ON THE THEORY OF PICARD-VESSIOT EXTENSIONS
    EPSTEIN, MP
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (01) : 77 - 77
  • [4] Cohomology for Picard-Vessiot theory
    Tsui, Man Cheung
    Wang, Yidi
    [J]. JOURNAL OF ALGEBRA, 2024, 658 : 49 - 72
  • [5] QUASIALGEBRAICITY OF PICARD-VESSIOT FIELDS
    Novikov, Dmitry
    Yakovenko, Sergei
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (02) : 551 - 591
  • [6] ON THE THEORY OF PICARD-VESSIOT EXTENSIONS
    EPSTEIN, MP
    [J]. ANNALS OF MATHEMATICS, 1955, 62 (03) : 528 - 547
  • [7] Embedded Picard-Vessiot extensions
    Brouette, Quentin
    Cousins, Greg
    Pillay, Anand
    Point, Francoise
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) : 4609 - 4615
  • [8] ON AN EXTENSION OF PICARD-VESSIOT THEORY
    KREIMER, HF
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (01) : 191 - &
  • [9] Picard-Vessiot theory for real fields
    Teresa Crespo
    Zbigniew Hajto
    Elżbieta Sowa
    [J]. Israel Journal of Mathematics, 2013, 198 : 75 - 89
  • [10] ON THE DYNAMICAL MEANING OF THE PICARD-VESSIOT THEORY
    Morales-Ruiz, Juan J.
    Maria Peris, Josep
    [J]. REGULAR & CHAOTIC DYNAMICS, 2001, 6 (03): : 277 - 290