Initial-boundary value problem for the equation of timelike extremal surfaces in Minkowski space

被引:13
|
作者
Liu, Jianli [1 ]
Zhou, Yi [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Minist Educ China, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2890393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigate the mixed initial-boundary value problem for the equation of timelike extremal surfaces in Minkowski space R1+(1+n) in the first quadrant. Under the assumptions that the initial data are bounded and the boundary data are small, we prove the global existence and uniqueness of the C-2 solutions of the initial-boundary value problem for this kind of equation. Based on the existence results on global classical solutions, we also show that, as t tends to infinity, the first order derivatives of the solutions approach C-1 traveling wave, under the appropriate conditions on the initial and boundary data. Geometrically, this means the extremal surface approaches a generalized cylinder which is an exact solution. (C) 2008 American Institute of Physics.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Initial-Boundary Value Problem for a Nonlinear Beam Vibration Equation
    Sabitov, K. B.
    Akimov, A. A.
    [J]. DIFFERENTIAL EQUATIONS, 2020, 56 (05) : 621 - 634
  • [22] On Initial-Boundary Value Problem on Semiaxis for Generalized Kawahara Equation
    Faminskii A.V.
    Martynov E.V.
    [J]. Journal of Mathematical Sciences, 2022, 265 (5) : 849 - 864
  • [23] The initial-boundary value problem for the generalized double dispersion equation
    Xiao Su
    Shubin Wang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [24] Initial-Boundary Value Problem for Viscoelastic Rectangular Plate Equation
    Wang, Dongbao
    Wang, Yinzhu
    [J]. WEB INFORMATION SYSTEMS AND MINING, PT I, 2011, 6987 : 98 - 103
  • [25] Mixed Initial-Boundary Value Problem for the Capillary Wave Equation
    Campos, B. Juarez
    Kaikina, Elena
    Paredes, Hector F. Ruiz
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [26] ON THE INITIAL-BOUNDARY VALUE-PROBLEM FOR THE BOLTZMANN-EQUATION
    CERCIGNANI, C
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 116 (04) : 307 - 315
  • [27] NUMERICAL SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION
    Bektemesov, Maktagali A.
    Kabanikhin, Sergey I.
    Nurseitov, Daniyar B.
    Kasenov, Syrym Y.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : C4 - C21
  • [28] The phase space of the initial-boundary value problem for the Oskolkov system
    Sviridyuk, GA
    Yakupov, MM
    [J]. DIFFERENTIAL EQUATIONS, 1996, 32 (11) : 1535 - 1540
  • [29] Initial-boundary value problem with a nonlocal boundary condition for a multidimensional hyperbolic equation
    L. S. Pul’kina
    [J]. Differential Equations, 2008, 44 : 1119 - 1125
  • [30] Bjorling problem for timelike surfaces in the Lorentz-Minkowski space
    Chaves, R. M. B.
    Dussan, M. P.
    Magid, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 481 - 494