On the Chaotic Behaviour of Discontinuous Systems

被引:27
|
作者
Battelli, Flaviano [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Univ Politecn Marche, Dipartimento Sci Matemat, I-60131 Ancona, Italy
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
Bernouilli shift; Chaotic behaviour; Discontinuous systems; EXPONENTIAL DICHOTOMIES; MELNIKOV METHOD; BIFURCATIONS; ORBITS;
D O I
10.1007/s10884-010-9197-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C (1) homoclinic solution that crosses transversally the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. Application of this result to quasi periodic systems are also given.
引用
收藏
页码:495 / 540
页数:46
相关论文
共 50 条
  • [41] On the Existence of Polynomials with Chaotic Behaviour
    Bernardes, Nilson C., Jr.
    Peris, Alfredo
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [42] Extremal behaviour of chaotic dynamics
    Freitas, Jorge Milhazes
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (03): : 302 - 332
  • [43] Chaotic behaviour on population dynamics
    Bernardes, A.T.
    Moreira, J.-G.
    Castro-e-Silva, A.
    Computer Physics Communications, 1999, 121
  • [44] Chaotic behaviour in binary galaxies
    Stewart, P.
    Astronomy and Astrophysics, 1993, 269 (1-2):
  • [45] Impact of discontinuous deformation upon the rate of chaotic mixing
    Smith, Lachlan D.
    Rudman, Murray
    Lester, Daniel R.
    Metcalfe, Guy
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [46] Discontinuous transition between seaweed and chaotic growth morphology
    Ihle, T
    MullerKrumbhaar, H
    JOURNAL DE PHYSIQUE I, 1996, 6 (07): : 949 - 967
  • [47] Neuromorphic behaviour in discontinuous metal films
    Bose, Saurabh K.
    Mallinson, Joshua B.
    Galli, Edoardo
    Acharya, Susant K.
    Minnai, Chloe
    Bones, Philip J.
    Brown, Simon A.
    NANOSCALE HORIZONS, 2022, 7 (04) : 437 - 445
  • [48] A topological analysis of a family of dynamical systems with non-standard chaotic and periodic behaviour
    Horn, C
    Ramadge, PJ
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 67 (06) : 979 - 996
  • [49] Chaotic behaviour of uniformly convergent non-autonomous systems with randomly perturbed trajectories
    Szala, Leszek
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (07) : 592 - 605
  • [50] Anticipating the chaotic behaviour of industrial systems based on stochastic, event-driven simulations
    Bruzzone, AG
    Revetria, R
    Simeoni, S
    Viazzo, S
    Orsoni, A
    COMPUTING ANTICIPATORY SYSTEMS, 2004, 718 : 557 - 565